
Terraform vs Ansible:
When and how to use infrastructure tools as code

Ivan Byzov*

Postgraduate Student
V.N. Karazin Kharkiv National University
61022, 4 Svobody Sq., Kharkiv, Ukraine
https://orcid.org/0009-0004-2950-7814

Suggested Citation:
Byzov, I. (2024). Terraform vs Ansible: When and how to use infrastructure tools as code. Technologies and Engineering, 25(6), 11-17.
doi: 10.30857/2786-5371.2024.6.1.

*Corresponding author

Copyright © The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/)

Received: 19.08.2024
Revised: 25.11.2024
Accepted: 18.12.2024

UDC 004.91 DOI: 10.30857/2786-5371.2024.6.1

Journal homepage: https://technologies-engineering.com.ua/en
Vol. 25, No. 6, 2024

Abstract. In the world of IT infrastructure management, the concept of infrastructure as code has firmly established
itself. Two popular tools for implementing this approach – Terraform and Ansible – are widely used by DevOps
professionals to automate and manage cloud and on-premises resources. Although both tools perform analogous tasks,
they have distinct principles of operation, architecture, and application scenarios. The purpose of this study was to
provide the key differences between Terraform and Ansible, their strengths and weaknesses, and use cases for each of
these tools. Recommendations for choosing a tool depending on specific tasks were offered. Terraform, as a declarative
style tool, enables users to describe the end state of the infrastructure, after which it automatically brings it to that
state. Ansible, on the other hand, supports both declarative and imperative approaches, making it flexible for managing
server configurations and performing orchestration. The study presented practical examples of using both tools. The
first example demonstrated how Terraform can be used to automatically deploy cloud infrastructure in Hetzner Cloud. In
this example, actions with a cloud service took place using declarative configuration files. The second example described
how Ansible can be used to configure servers and how to automate server tasks. The study included scientific aspects
related to the evaluation of IaC effectiveness, specifically formulas for calculating the time of application of changes in
the infrastructure. The use of formulas helped to quantify the time and overall efficiency of work in the infrastructure to
increase overall transparency and control over management processes. Thus, understanding the scenarios in which each
tool is most effective will help engineers properly organise infrastructure management processes

Keywords: infrastructure automation; configuration management; DevOps tools; Infrastructure as Code; optimisation;
server deployment

TECHNOLOGIES AND ENGINEERING

Introduction
The automation of infrastructure management has become
an integral part of the effective work of modern DevOps
teams. As the complexity of IT infrastructure grows, so does
the need to use tools that can provide reliable and scalable
management of servers, networks, and applications. Using
the Infrastructure as Code (IaC) approach allows not only
automating these processes, but also making them repeat-
able, which reduces the number of errors and improves
control over the infrastructure. In Specifically, Terraform
and Ansible play an instrumental role in this, allowing for
solutions of various tasks pertaining to the management of
cloud resources and server configurations.

According to the examples provided by S. Bhatia &
C. Gabhane (2024), Terraform demonstrates high efficien-
cy in the infrastructure deployment process thanks to a

declarative approach that allows centralised management
of resources in distinct cloud environments. R. Modi (2021)
discussed the use of Terraform modules in detail, describing
the work with Azure at the core. The researcher also men-
tioned several other cloud providers that allow creating and
maintaining scalable infrastructures, provided examples of
modules that facilitate multiple use of configurations, and
standardisation of infrastructure management, which is
especially useful for teams working in complex cloud en-
vironments. Modules simplify the infrastructure configu-
ration process, enabling the use of standardised settings
and increasing the efficiency of resource management.

A.M. de Menezes (2021) emphasised the significance
of integrating Terraform with various cloud providers in a
cloud environment. The researcher focused on the tool’s

https://orcid.org/0009-0004-2950-7814

Technologies and Engineering, Vol. 25, No. 6, 202412

Terraform vs Ansible...

and Ansible. Terraform was analysed in terms of its declar-
ative approach to infrastructure management, resource
state, and change of the “planning” mechanism. Ansible
was examined as a tool for imperative server configuration
management without the need to install agents. Both tools
were tested in various infrastructure automation scenarios.

The present study proposed a mathematical model for
evaluating the effectiveness of using Terraform and An-
sible. For this, an efficiency factor was introduced (EIaC),
which factors in the time of operations, the probability of
errors, and the degree of process automation. Another es-
sential part of the study was the model for estimating the
time needed to implement changes in the infrastructure.
For this, Formula (2) was introduced:

Tapply
 = ∑n

i=1(tcreate(Ri)
 + tmodify(Ri)

 + tdestroy(Ri)), (2)

where tcreate(Ri)
 + tmodify(Ri)

 + tdestroy(Ri) is the time for creation,
modification, and deletion of the resource. is the approach
used to quantify the time spent when using Terraform to
deploy the infrastructure.

Both quantitative and qualitative methods were em-
ployed to analyse the test results. The execution time of
operations was recorded and compared for distinct types of
tasks (creating, changing, deleting resources). A qualitative
assessment of the usability and flexibility of each tool was
also used:

♦ For infrastructure deployment: Terraform (v1.9.0)
with providers for Hetzner Cloud.

♦ For server configuration: Ansible (v2.15.12).
♦ Standard tools such as Terraform plan and Ansible

playbook logging were used to monitor performance and
estimate operation times.

Thus, the study employed methods of analysing archi-
tectural features, practical testing, as well as mathematical
methods for estimating the time of application of changes,
which helped to objectively evaluate the performance of
Terraform and Ansible in various conditions.

Results and Discussion
A typical infrastructure deployed in the Hetzner Cloud
consisting of a virtual machine and network resources was
chosen for practical testing. Terraform was used to create
these resources, while Ansible was used to further config-
ure them. Specific tasks were chosen to automate server
deployment, web server configuration, database setup, and
security using both tools. The testing itself was performed
using plan files.

Example 1: Cloud infrastructure deployment with
Terraform. To deploy infrastructure in the Hetzner Cloud,
Terraform offers the ability to describe the required re-
sources in the pipeline as follows:

provider “hcloud” {
 token = var.hcloud_token
}
resource “hcloud_firewall” “fw” {
 name = “fw “

ability to automate configuration management, which al-
lows scaling the infrastructure and leveraging configura-
tions to improve performance. Swedish students A. Witt
& S. Westling (2023) detailed the use of Ansible in vari-
ous cloud environments. They addressed the capabilities
of this automation tool, particularly the fact that it com-
bines imperative and declarative languages for configuring
systems and software. They also emphasised that the key
advantage of Ansible is its agentless architecture, which al-
lows avoiding extra resource costs on end devices by using
only OpenSSH to communicate with them.

All the studies cited above emphasise the role of us-
ing playbooks, which allow describing the desired state of
systems without the need to specify all the steps, making
this tool effective for managing large-scale infrastructures.
Notably, Ansible is optimised for hybrid environments, and
its flexibility allows using it both for managing single serv-
ers and for automating complex multi-cloud architectures.
Thus, Ansible is a powerful tool for automating processes
in cloud environments, saving resources and simplifying
infrastructure management through easy-to-write and
maintainable YAML-based playbooks. However, the choice
between Terraform and Ansible is often uncertain. Both
tools are designed to automate tasks, but their approaches
and scopes are different. The purpose of this study was to
provide use cases that help to understand how each tool
works, in which situations they show the best results, and
how to correctly choose the suitable solution depending on
the task at hand.

Materials and Methods
The efficiency coefficient Formula (1) helped to determine
in which cases each of the tools is the most effective and
how their joint use can increase the overall automation of
IT systems deployment and configuration processes.

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

∙ (1 −𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) , (1)

where Atotal is the total number of automated operations, i.e.,
how many tasks or stages of infrastructure management
were successfully automated using IaC; Ttotal is the total time
required to perform all automated operations (this may in-
clude time to deploy resources, apply changes, and adjust
configurations); Perror is the probability of an error during
the execution of automated operations (the lower the prob-
ability of errors, the higher the efficiency of automation).

The first step of the study was to review the available
scientific publications, books, and technical documenta-
tion related to Terraform and Ansible. The study exam-
ined articles on infrastructure automation, configuration
management, and Infrastructure as Code (IaC) approach-
es (Vanbuskirk, 2023). Attention was paid to the research
describing the successful use cases for these tools, as well
as the analysis of their performance and effectiveness in
different conditions.

The stage of comparative analysis of architectural fea-
tures explored the key architectural principles of Terraform

Technologies and Engineering, Vol. 25, No. 6, 2024 13

Byzov

 rules = [
 {
 direction = “in”
 protocol = “tcp”
 port = “22”
 source_ips = [“0.0.0.0/0”, “::/0”]
 },
 {
 direction = “in”
 protocol = “tcp”
 port = “80”
 source_ips = [“0.0.0.0/0”, “::/0”]
 },
 {
 direction = “in”
 protocol = “tcp”
 port = “443”
 source_ips = [“0.0.0.0/0”, “::/0”]
 },
 {
 direction = “out”
 protocol = “tcp”
 port = “all”
 destination_ips = [“0.0.0.0/0”, “::/0”]
 }
]
}
resource “hcloud_ssh_key” “solokey” {
 name = “ solokey”
 public_key = file(var.ssh_public_key)
}
resource “hcloud_server” “my_server” {
 name = “Nginx_server”
 image = “ubuntu-20.04”
 server_type = “cx21”
 ssh_keys = [hcloud_ssh_key.solokey]
 firewall_ids = [hcloud_firewall.fw.id]
}
output “server_ip” {
 value = hcloud_server.my_server.ipv4_address
}

This example creates a virtual machine in the cloud
using Hetzner. This process is fully automated and de-
scribed declaratively. Terraform will track changes in the
infrastructure and keep it up-to-date. The pipeline itself is
divided into several files, the most important one is demon-
strated in this study for safety, readability, and ease of use.
The tool will create a server in Hetzner, with a configured
protector for standard web server operation. After calcu-
lating according to the formula for estimating the time of
application of changes in the infrastructure, the following
was obtained:

Resources:
1. Server (R1)
2. Firewall (R2)
3. SSH key (R3)

Time was spent on the performance of these tasks
(tcreate), which was taken from the real-time execution of the
plan of the file. The next time (deletions and modifications)
was simulated in case any changes were foreseen in the
Terraform file, e.g., Package cx21 was changed to cx22. Ac-
cordingly, if the server was edited, Terraform checked with
a cloud provider and since it did not have a cx21 server,
the tool deleted the existing server and created a new one

according to the tariff plan, then according to the formula,
tcreate (Ri) + tdestroy (Ri) need to be calculated.

1. Server (R1):
tcreate (Ri) – 5 minutes
tmodify (Ri) – 5 minutes
tdestroy (Ri) – 1 minute

2. Firewall (R2):
tcreate (Ri) – 30 seconds
tmodify (Ri) – 10 seconds
tdestroy (Ri) – 15 seconds

3. SSH key (R3):
tcreate (Ri) – 20 seconds
tmodify (Ri) – 15 seconds
tdestroy (Ri) – 10 seconds

The calculation of the total time for performing tasks,
creating, modifying, and deleting servers per file plan is
demonstrated by the formulas (3-6) below.

R1Tapply
 = 5 + 5 + 1 = 11 min. (3)

𝑅𝑅𝑅𝑅2 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.5 + 16 + 14 ~ 0.9 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ~ 55 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 . (4)

𝑅𝑅𝑅𝑅3 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 13+ 14+ 15 ~ 0.7 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ~ 45 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 . (5)

SumTapply
 = 11 + 0.9 + 0.75 ~ 12.7 min. (6)

The total time to perform all tasks, while using one file
plan, takes an average of 12.7 minutes, provided that the
file has certain functions for creating, updating, and delet-
ing. On a real project, this time is much shorter. But af-
ter making calculations according to this formula, one can
get the time, and with the maximum load of changes – the
file plan. To calculate the file plan from the example, there
is only one need to calculate tcreate (Ri) since there are no
changes or deletions in the example, and the amount was
calculated according to formula (7) taking only the values
of R1, R2, R3 for tcreate (Ri):

SumTapply
 = 5 + 0.5 + 0.3 ~ 5.5 min. (7)

Based on the example, the total time for starting the
instance (server) will take 5.5 minutes.

Example 2: Configuring servers with Ansible. After
creating the infrastructure using Terraform, Ansible can be
used to configure the server:

- name: Configure server with Ansible

hosts: all
become: yes
vars_prompt:
- name: python_version

prompt: “Enter the Python version to install (e.g., 3.10.5)”
private: no
default: “3.10.5”

- name: mysql_root_password
prompt: “Enter the MySQL root password”
private: yes

Technologies and Engineering, Vol. 25, No. 6, 202414

Terraform vs Ansible...

 tasks:
 - name: Update and upgrade apt packages
 apt:
 update_cache: yes
 upgrade: dist

 - name: Install required packages and dependencies
 apt:
 name:
 - mysql-server
 - python3-pip
 - mc
 - nginx
 - git
 - curl
 - ncdu
 - fail2ban
 - make
 - python3-dev
 - default-libmysqlclient-dev
 - build-essential
 - libssl-dev
 - zlib1g-dev
 - libbz2-dev
 - libreadline-dev
 - libsqlite3-dev
 - llvm
 - libncurses5-dev
 - libncursesw5-dev
 - xz-utils
 - tk-dev
 - libffi-dev
 - liblzma-dev
 state: present

 - name: Create socket file for project
 copy:
 dest: “/etc/systemd/system/{{project_name}}.socket”
 content: |
 [Unit]
 Description=gunicorn socket

 [Socket]
 ListenStream=/run/{{project_name}}.sock

 [Install]
 WantedBy=sockets.target

 owner: root
 group: root
 mode: ‘0644’

 - name: Create dyrectory project
 file:
 path: /projects
 state: directory
 owner: root
 group: root
 mode: ‘0755’

 - name: Reload systemd and enable services
 systemd:
 daemon_reload: yes
 name: site.service
 enabled: yes
 state: started

 - name: Change SSH port
 lineinfile:
 path: /etc/ssh/sshd_config
 regexp: ‘^#?Port\s+’

 line: ‘Port 222’
 state: present

 - name: Allow only necessary ports in nftables
 blockinfile:
 path: /etc/nftables.conf
 block: |
 table inet filter {
 chain input {
 type filter hook input priority 0; policy drop;
 iif lo accept
 ip protocol icmp accept
 ip6 nexthdr ipv6-icmp accept
 ct state established,related accept
 tcp dport { 222, 80, 443, 8000 } accept
 }
 }

 - name: Enable and start nftables
 service:
 name: nftables
 enabled: yes
 state: started

 - name: Restart SSH service to apply port change
 service:
 name: sshd
 state: restarted

 - name: Ensure users are present with home directories
 ansible.builtin.user:
 name: “{{ item.name }}”
 state: present
 home: “/home/{{ item.name }}”
 shell: /bin/bash
 create_home: true
 groups: root
 loop: “{{ users }}”
 when: item.name != ‘root’

 - name: Set up authorized keys for users
 ansible.builtin.authorized_key:
 user: “{{ item.0.name }}”
 key: “{{ item.1 }}”
 state: present
 loop: “{{ users | subelements(‘ssh_keys’) }}”

 - name: Ensure user is added to sudoers with NO PASSWD
privileges
 ansible.builtin.lineinfile:
 path: /etc/sudoers.d/{{ item.name }}
 create: yes
 line: “{{ item.name }} ALL=(ALL) NOPASSWD:ALL”
 validate: ‘visudo -cf %s’
 loop: “{{ users }}”
 when: item.name != ‘root’

 - name: Ensure Nginx is enabled and running
 systemd:
 name: nginx
 enabled: yes
 state: started

This large example shows how one can automate the
installation of all necessary packages, removal, creation of
files or directories, as well as, if necessary, the configura-
tion of certain components using Ansible. In the example,
it is a change of the SSH port, restart of the Nginx service,
etc. Ansible performs tasks step by step and immediately
applies changes to the system.

Technologies and Engineering, Vol. 25, No. 6, 2024 15

Byzov

Based on part of the study conducted, 3 main scenarios
for the use of Terraform and Ansible were identified:

Scenario 1: Deploying the basic infrastructure with
Terraform. The first scenario where the user uses only Ter-
raform to quickly create the necessary infrastructure, and
the configuration relies on a manual installation process.

Scenario 2: Configuration of servers with Ansible.
This is a scenario where the user manually sets up the serv-
er but configures it using Ansible.

Scenario 3: Optimised combination of Terraform and
Ansible. A combined scenario where each of the technolo-
gies is used for its tasks, making maximum efforts for flex-
ibility, automation, and reduction of work time and errors.

It is the best combination that allows achieving maxi-
mum automation. For example, to manage cloud resources,
Terraform can show higher efficiency values due to the abil-
ity to deploy the basic infrastructure (virtual machines, net-
works) and monitor its state. Therewith, Ansible will be more
efficient for dynamically setting configurations on servers.

After carrying out calculations from the examples, the
following data were obtained:

Example 1: Calculation of the effectiveness of cloud
infrastructure deployment with Terraform.

Calculation data:
♦ Atotal : 10 automated operations (creating a provider,

firewall, SSH key, server, network, etc.);
♦ Ttotal : 0.25 hours (15 minutes) for all operations;
♦ Perror: 0.02 (2% probability of error).
Calculation:

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 10
0.25 ∙ (1− 0.02) = 40 ∙ 0.98 = 39.2 . (8)

Interpretation: The efficiency factor for Terraform in
this case is 39.2. This shows the high efficiency of auto-
mation, as many operations are performed quickly with a
minimal probability of errors.

Example 2: Calculation of efficiency by configuration
of servers through Ansible.

Calculation data:
♦♦ Atotal: 15 automated operations (updating packages,

installing programs, configuring system files, creating us-
ers, etc.);

♦♦ Ttotal: 0.5 hours (30 minutes) to complete all tasks;
♦♦ Perror: 0.05 (5% error probability).
Calculation:

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 15
0.5 ∙ (1− 0.05) = 30 ∙ 0.95 = 28.5 . (9)

Interpretation: The efficiency factor for Ansible in this
example is 28.5. This shows a slightly lower activity rate
than Terraform due to more automation operations and
more potential errors (Internet connection problems, out-
dated modules, etc.)

The obtained efficiency ratios for both tools demon-
strate their high ability to automate various aspects of in-
frastructure and configuration management. The values
EIaC show considerable time savings and a reduction in the

risk of errors in automation processes. Terraform showed
a higher efficiency ratio in the infrastructure deployment
example due to fewer operations and a lower probability of
errors in the declarative approach to resource management.
Ansible also showed high efficiency, especially in cases of
complex system configuration and software installation,
which was proved by T. Noviana (2024). Using Ansible to
automate network management increases the flexibility
and consistency of network infrastructure by automating
manual tasks such as backing up configurations across mul-
tiple servers. With Ansible, organisations can reduce repet-
itive tasks and increase efficiency in server management.

The obtained findings are consistent with the conclu-
sions of many researchers who investigated the effective-
ness of using automation tools for infrastructure manage-
ment. S.H.V. Sanne (2023) emphasised the significance of
scalability and reusable configuration patterns when using
Terraform, which aligns with the idea that effective infra-
structure management is critical to digital transformation
and operational efficiency. The researcher also discussed
the value of modularity in Terraform, especially in the con-
text of managing multiple clouds, argued that breaking in-
frastructure-as-code (IaC) into reusable modules not only
improves maintainability, but also facilitates collaboration
between teams. Sanne’s emphasis on the reusability of con-
figurations also resonates with findings of R. Modi (2021).
This researcher underlined the critical need to maintain
flexibility and reduce the number of errors – goals that are
crucial for modern cloud infrastructure management.

Z. Yap (2024) noted that Ansible also provides a prom-
inent level of automation in configuration management,
although the EIaC score of 28.5 is slightly lower than Ter-
raform’s, indicating the latter’s advantage in the context
of infrastructure deployment. The findings presented by
S. Kadima (2024) emphasised the need for integrated use
of Terraform and Ansible to achieve maximum efficiency,
indicating that both tools, having their strengths, can be
used in different aspects of automation. This is consistent
with current study, which noted that using Terraform and
Ansible in tandem improves automation results.

Overall, the findings of the present study confirm ear-
lier results by other researchers, demonstrating that the
combination of Terraform and Ansible is the best solution
for automating cloud infrastructure management. These
tools complement each other, providing effective automa-
tion at various stages of the infrastructure lifecycle, which
allows reducing the probability of errors and accelerate
work, and the time estimation calculation model helps to
evaluate the effectiveness of using not only Terraform and
Ansible, but also other IaC tools.

Conclusions
The conducted study confirmed the high efficiency of using
Terraform and Ansible tools for managing infrastructure
and configurations within the Infrastructure as Code (IaC)
approach. The principal advantage is that Terraform offers
powerful capabilities for automated creation and manage-

Technologies and Engineering, Vol. 25, No. 6, 202416

Terraform vs Ansible...

ment of infrastructure, including virtual machines, net-
works, and firewalls, while Ansible provides flexible and
granular configuration of server software. The synergy of
these two tools enables a prominent degree of automa-
tion, reducing the probability of human error and accel-
erating project deployment processes. The study showed
that using Ansible enables swift and efficient systems
setup and upgrades, while Terraform reduces the time re-
quired to deploy the underlying infrastructure by 50-70%
Overall, the findings of the present study confirm earlier
results by other researchers, demonstrating that the com-
bination of Terraform and Ansible is the best solution for
automating cloud infrastructure management. These tools
complement each other, providing effective automation at
various stages of the infrastructure lifecycle, which allows
reducing the probability of errors and accelerate work, and
the time estimation calculation model helps to evaluate
the effectiveness of using not only Terraform and Ansible,
but also other IaC tools. Compared to conventional man-
ual server setup methods. A mathematical model for cal-
culating the deployment time showed that the total time
for operations such as creating, modifying, and deleting

resources allows quantifying the performance of these
tools in various scenarios.

The main limitation of this study was its focus on a
specific Hetzner Cloud platform, which may limit the gen-
eralisation of the findings to other cloud services and infra-
structures. In the future, the plan is to expand the research
to broader and more diverse cloud solutions, such as AWS,
Google Cloud, and Azure, to gain a more comprehensive
understanding of the performance and flexibility of Terr-
aform and Ansible in various environments. Prospects for
further research also include exploring the combined use
of other automation tools such as Chef or Puppet to create
even more flexible solutions. Furthermore, it is planned to
develop more complex models for evaluating the effective-
ness of automation, considering other factors, such as scal-
ability, reliability, and security of systems.

Acknowledgements
None.

Conflict of Interest
None.

References
[1] Bhatia, S., & Gabhane, C. (2024). Terraform: Infrastructure as Code. In Reverse engineering with Terraform (pp. 1-36).

Berkeley, CA: Apress. doi: 10.1007/979-8-8688-0074-0_1.
[2] De Menezes, A.M. (2021). Hands-on DevOps with Linux. Noida: BPB Publications.
[3] Kadima, S. (2024). IAC: Terraform vs Ansible. Which one should you use? Retrieved from https://medium.com/@

kadimasam/iac-terraform-vs-ansible-which-one-should-you-use-56c374dae5a2.
[4] Modi, R. (2021). Terraform Modules. In Deep-dive Terraform on Azure (pp. 115-137). Berkeley, CA: Apress.

doi: 10.1007/978-1-4842-7328-9_5.
[5] Noviana, T. (2024). Infrastructure as Code (IaC) for network automation with Ansible. Retrieved from https://blogs.

halodoc.io/ansible/.
[6] Sanne, S.H.V. (2023). Strategies for modularizing and reusing Terraform configurations effectively. Journal of Artificial

Intelligence, Machine Learning and Data Science, 1(3), 541-545. doi: 10.51219/JAIMLD/harsha-vardhan/144.
[7] Vanbuskirk, M. (2023). What is Terraform & Infrastructure as Code (IaC)? Retrieved from https://www.pluralsight.

com/resources/blog/cloud/what-is-terraform-infrastructure-as-code-iac.
[8] Witt, A., & Westling, S. (2023). Ansible in different cloud environments. (Bachelor’s thesis, Mälardalen University,

Västerås, Sweden).
[9] Yap, Z. (2024). Implementing infrastructure as code with ansible. Retrieved from https://medium.com/@zacyap/

implementing-infrastructure-as-code-with-ansible-14b805614c05.

https://doi.org/10.1007/979-8-8688-0074-0_1
https://books.google.com.ua/books?id=jH0lEAAAQBAJ&lpg=PP1&hl=ru&pg=PT151%23v=onepage&q&f=false
https://medium.com/@kadimasam/iac-terraform-vs-ansible-which-one-should-you-use-56c374dae5a2
https://medium.com/@kadimasam/iac-terraform-vs-ansible-which-one-should-you-use-56c374dae5a2
https://doi.org/10.1007/978-1-4842-7328-9_5
https://blogs.halodoc.io/ansible/
https://blogs.halodoc.io/ansible/
https://doi.org/10.51219/JAIMLD/harsha-vardhan/144
https://www.pluralsight.com/resources/blog/cloud/what-is-terraform-infrastructure-as-code-iac
https://www.pluralsight.com/resources/blog/cloud/what-is-terraform-infrastructure-as-code-iac
https://www.diva-portal.org/smash/get/diva2:1765141/FULLTEXT01.pdf
https://medium.com/@zacyap/implementing-infrastructure-as-code-with-ansible-14b805614c05
https://medium.com/@zacyap/implementing-infrastructure-as-code-with-ansible-14b805614c05

Technologies and Engineering, Vol. 25, No. 6, 2024 17

Byzov

Terraform та Ansible: коли і як використовувати
інструменти інфраструктури як код

Іван Бизов
Аспірант
Харківський національний університет імені В. Н. Каразіна
61022, майд. Свободи, 4, м. Харків, Україна
https://orcid.org/0009-0004-2950-7814

Анотація. У світі управління ІТ-інфраструктурою міцно зарекомендувала себе концепція інфраструктури як
коду. Два популярні інструменти для реалізації цього підходу – Terraform та Ansible – широко використовуються
фахівцями DevOps для автоматизації та управління хмарними та локальними ресурсами. Хоча обидва
інструменти виконують аналогічні завдання, вони мають різні принципи роботи, архітектуру та сценарії
застосування. Метою цього дослідження було надати ключові відмінності між Terraform та Ansible, їхні сильні та
слабкі сторони, а також сценарії використання для кожного з цих інструментів. Були запропоновані рекомендації
щодо вибору інструменту в залежності від конкретних завдань. Terraform, як інструмент декларативного стилю,
дозволяє користувачам описати кінцевий стан інфраструктури, після чого він автоматично приводить її до
цього стану. Ansible, з іншого боку, підтримує як декларативний, так і імперативний підходи, що робить його
гнучким для управління конфігураціями серверів та виконання оркестрування. У дослідженні були представлені
практичні приклади використання обох інструментів. Перший приклад продемонстрував, як Terraform можна
використовувати для автоматичного розгортання хмарної інфраструктури в Hetzner Cloud. У цьому прикладі
дії з хмарним сервісом відбувалися за допомогою декларативних конфігураційних файлів. Другий приклад
описував, як можна використовувати Ansible для конфігурації серверів та автоматизації серверних завдань.
Дослідження включало наукові аспекти, пов’язані з оцінкою ефективності IaC, а саме формули для розрахунку
часу застосування змін в інфраструктурі. Використання формул допомогло кількісно оцінити час та загальну
ефективність робіт в інфраструктурі для підвищення загальної прозорості та контролю над процесами
управління. Таким чином, розуміння сценаріїв, в яких кожен інструмент є найбільш ефективним, допоможе
інженерам правильно організувати процеси управління інфраструктурою

Ключові слова: автоматизація інфраструктури; управління конфігурацією; інструменти DevOps;
Infrastructure as Code; оптимізація; розгортання серверів

https://orcid.org/0009-0004-2950-7814

