
Virtualisation and network management:
Best practices for improving efficiency

Oleksandr Berestovenko*

Postgraduate Student
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
03056, 37 Beresteiskyi Ave., Kyiv, Ukraine
https://orcid.org/0000-0003-4887-4674

Suggested Citation:
Berestovenko, O. (2024). Virtualisation and network management: Best practices for improving efficiency. Technologies and Engineering,
25(6), 41-52. doi: 10.30857/2786-5371.2024.6.4.

*Corresponding author

Copyright © The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/)

Received: 29.08.2024
Revised: 18.11.2024
Accepted: 18.12.2024

UDC 004.738.5 DOI: 10.30857/2786-5371.2024.6.4

Journal homepage: https://technologies-engineering.com.ua/en
Vol. 25, No. 6, 2024

Abstract. This study aimed to identify optimal approaches for enhancing the efficiency of network management
and virtualisation processes. Four key methods were examined: resource allocation optimisation using intelligent
algorithms, load forecasting through Machine Learning models, dynamic load balancing enabled by software-defined
networking technologies, and automated resource management guided by policy-based frameworks. The research
provided a detailed analysis of each method, including their operating principles and implementation stages. Diagrams
illustrating the architecture and operational mechanisms of these methods were presented, alongside practical examples
of their application in various infrastructures, such as cloud environments, software-defined networks, and corporate
data centres. Additionally, software implementations in Python were developed, demonstrating the functionality of the
proposed approaches. The findings highlighted several key benefits: resource allocation optimisation effectively improved
the utilisation of computing power in cloud environments; load forecasting enabled proactive infrastructure adaptation
to peak activity periods; SDN-based load balancing facilitated centralised traffic management and reduced latency, which
is critical for modern corporate networks; and automated resource management through policies reduced costs and
supported system stability by dynamically responding to load variations. A comparative analysis of the methods revealed
distinct advantages and limitations for each approach, emphasising the importance of selecting the appropriate method
based on the specific requirements of the infrastructure. Overall, the results confirmed the viability of these approaches
for enhancing the performance and stability of virtualised environments and network systems

Keywords: computing resource allocation; load forecasting; dynamic balancing; process automation; traffic
optimisation

TECHNOLOGIES AND ENGINEERING

Introduction
Virtualisation is a basic cloud computing technology that
involves creating virtual environments for the efficient
use of physical resources, such as servers, networks and
storage, using full virtualisation, paravirtualisation and
containerisation techniques. Despite its advancements,
virtualisation development has faced several challenges,
including resource optimisation, maintaining system sta-
bility under varying loads, minimising latency, and adapt-
ing infrastructures to dynamic conditions. Traditional
management approaches have not consistently addressed
these demands, highlighting the need for innovative solu-
tions in areas such as load forecasting, centralised manage-
ment, and enhancing the efficiency and stability of virtual-
ised environments.

For example, M. Vasylkivskyi et al. (2023) explored
the use of Artificial Intelligence and Machine Learn-
ing to automate resource management in 5G networks,
with a focus on network orchestration and Radio Access
Network (RAN) resource allocation using reinforcement
learning methods. Their study also examined technolo-
gies for traffic isolation and network monitoring, which
play a crucial role in the effective management of vir-
tualised resources. Similarly, O. Romanov et al. (2023)
analysed the application of Software-Defined Network-
ing (SDN) for managing Light Fidelity (Li-Fi) networks.
They proposed a centralised management system aimed
at optimising network resources, increasing throughput,
and reducing cell interference, thereby enhancing overall

https://orcid.org/0000-0003-4887-4674

Technologies and Engineering, Vol. 25, No. 6, 202442

Virtualisation and network management...

improving the efficiency of network management and vir-
tualisation, particularly in the areas of dynamic resource
management and adaptive load forecasting which are the
key aspects emphasised in the current study. The primary
objective of this study was to identify the most effective
strategies for enhancing network management and virtu-
alisation processes, with a focus on optimising resource
utilisation and maintaining high system performance. To
achieve this, the study set out the following tasks: devel-
oping algorithms for analysing and adaptively allocating
resources in virtualised networks, conducting modelling to
evaluate the proposed methods, and designing scenarios to
validate their practical application.

Materials and Methods
The study examined four main methods of increasing the
efficiency of virtualisation and network management. The
methodology included a general analysis of each method,
their implementation and operation. The research was
conducted using the Python programming language, on
the basis of which a specialised programme was developed
for each method.

Optimising resource allocation using intelligent algo-
rithms. To analyse this method, we identified the key stag-
es of its operation and presented the architecture of the
optimisation system. A Python program was created that
implements an algorithm for the dynamic distribution of
tasks between servers, taking into account the current load.
The program used metrics such as central processing unit
(CPU) and RAM usage and included functions for assign-
ing tasks, selecting the least loaded node, and updating
resource status.

Load forecasting using machine learning models. This
method analyses the key stages of building predictive mod-
els and presents a forecasting scheme. To implement it, a
Python program was developed that used a model based
on linear regression. The program processed test data on
resource usage, made load forecasts, trained the model,
and evaluated its accuracy. The practical application of the
method allowed automating resource scaling in cloud en-
vironments, preventing overloads and ensuring stable sys-
tem operation.

Dynamic load balancing using SDN technologies. We
used an architecture with a centralised SDN controller that
monitored the network status, analysed traffic, and made
routing decisions. For this method, a Python program was
developed that simulated the network using several virtu-
al nodes. The program interacted with the SDN controller,
received server load data, and redirected traffic to optimise
network capacity.

Automated resource management based on policies. This
method creates rules that regulate the activation or deac-
tivation of servers depending on the level of load. To im-
plement this method, a Python program was created that
assessed the status of servers according to the set policies
and dynamically changed their status between active and
passive modes.

network efficiency. Additionally, I. Kramarenko & O. Kur-
batov (2024) investigated virtualisation technologies,
particularly virtual networks and hypervisors, as tools
to improve resource management efficiency. They high-
lighted that implementing these solutions not only opti-
mises network processes but also enhances the transpar-
ency of financial and economic activities.

Conversely, U.S. Khan & T. Mahboob (2024) reviewed
the evolution of Quality of Service (QoS) management
methods in wireless and mobile networks, with a particular
focus on the implementation of Network Functions Virtu-
alisation (NFV) and Software-Defined Networking (SDN).
They provided a detailed analysis of how these technol-
ogies enhance resource utilisation, facilitate QoS man-
agement, and optimise network performance through the
separation of control and data planes in SDN and resource
virtualisation in NFV. K. Yang & Y. Xu (2024) addressed
the challenges of virtualising wireless resources using De-
vice-to-Device (D2D) communication. They formalised the
problem of channel allocation and power management to
improve system energy efficiency and proposed a solution
using a Convolutional Neural Network (CNN). This ap-
proach reduced computational complexity and achieved
faster results with minimal losses. Furthermore, A. Javad-
pour (2020) proposed an SDN-based approach to network
virtualisation for the dynamic management of infrastruc-
ture resources. The proposed controller module optimised
the mapping of virtual networks onto the physical infra-
structure, resulting in efficiency gains across multiple crite-
ria, including latency and cost. Finally, A. Manasyan (2022)
explored the automation of network management through
the analysis of virtualised network counterparts. The
study demonstrated the effectiveness of network virtual-
isation using an experimental network as a case study and
proposed solutions to address the identified challenges.

M.K. Hassan et al. (2023) investigated virtualised SDNs,
which enable the dynamic allocation of physical network
resources among multiple shares for different service pro-
viders. Their study addressed the challenges of efficient
resource management and maintaining service level agree-
ments in virtualised SDNs, while also highlighting a re-
search gap in the dynamic management of such resource
shares. Similarly, B.S. Neyigapula (2023) proposed a new
approach to resource management in NFV environments
using deep reinforcement learning. The methodology de-
veloped in the study enhanced NFV efficiency by solving
the problem of dynamic resource allocation, reducing
operational costs, and optimising resource utilisation.
Meanwhile, M. Moradi et al. (2024) focused on the issue
of resource allocation in NFV environments using math-
ematical programming techniques. The authors proposed
a multi-criteria mixed linear programming model to op-
timise resource allocation for VNFs, taking into account
resource constraints and latency requirements. It was vali-
dated through experimental results.

The reviewed works revealed a gap in addressing the
integration of optimal approaches for comprehensively

Technologies and Engineering, Vol. 25, No. 6, 2024 43

Berestovenko

At the final stage, all methods were compared by de-
veloping criteria for evaluating the advantages and limi-
tations of each approach to determine their effectiveness
in different scenarios of virtualised environments and net-
work infrastructure.

Results
Optimisation of resource allocation
through intelligent algorithms
By partitioning resources, virtualisation allows multiple
virtual machines to operate on a single physical server,
ensuring isolation and scalability. This technology serves
as the foundation of modern cloud computing, offering
enhanced flexibility and significant cost savings on infra-
structure. Key advantages of virtualisation include reduced
hardware costs, improved performance through optimal re-
source allocation, and simplified data backup and recovery
processes.

Network management is an essential component of
modern information systems, encompassing the mon-
itoring, configuration, diagnostics, and optimisation of
network resources. Effective network management em-
ploys both traditional methods and software-oriented

approaches, such as SDN enabling centralised manage-
ment of network functions via software interfaces.

The first method for enhancing the efficiency of virtu-
alisation and network management is resource allocation
optimisation using intelligent algorithms (Fig. 1). Optimis-
ing resource allocation in virtualised environments is crit-
ical to ensuring high computing efficiency and preventing
server overloads. This method leverages Machine Learning
algorithms, including clustering, time series forecasting,
and adaptive optimisation. These algorithms analyse his-
torical data, current loads, and interdependencies among
system components to determine optimal parameters for
each virtual environment. The implementation of this
method is often carried out in three stages: data collec-
tion (this involves monitoring server performance, CPU
utilisation, memory usage, network resources, and task ex-
ecution times – the collected data is stored in a centralised
database), data analysis and modelling (clustering algo-
rithms are used to identify groups of similar loads, while
time series forecasting estimates future peak values), and
resource allocation (adaptive resource management is per-
formed via the Application Programming Interface of vir-
tualised platforms, such as OpenStack or VMware).

Figure 1. Resource allocation optimisation design
Source: created by the author

Monitoring Data collection

Anomaly detection Data processing Resource clustering

Historical data analysis Forecasting Distribution optimisation

Resource management Feedback

The method of optimising resource allocation through
intelligent algorithms can be applied in cloud environments
to dynamically manage computing power. For instance, in
big data processing systems such as Apache Hadoop or
Spark, this approach automatically identifies the servers
best suited to perform specific tasks, based on their load
and resource availability. In telecommunications networks,
algorithms predict peak loads on base stations and optimise
their configurations to ensure stable communication. In
corporate data centres, this method can reduce energy con-
sumption by switching lightly loaded servers to sleep mode,
while maintaining high availability of critical services.

Below is a code fragment demonstrating the dynamic
distribution of tasks among servers based on their current
load. The implementation incorporates basic algorithms
to address the optimisation problem, considering metrics
such as CPU usage and RAM availability:

Servers with resources (CPU and RAM in percentage)
servers = [
 {“id”: 1, “cpu”: 30, “ram”: 40},
 {“id”: 2, “cpu”: 60, “ram”: 70},
 {“id”: 3, “cpu”: 90, “ram”: 80},

]

Tasks with resource requirements
tasks = [
 {“id”: “A”, “cpu_req”: 20, “ram_req”: 30},
 {“id”: “B”, “cpu_req”: 50, “ram_req”: 20},
 {“id”: “C”, “cpu_req”: 10, “ram_req”: 40},
 {“id”: “D”, “cpu_req”: 30, “ram_req”: 30},
]

Algorithm for assigning tasks to servers
def assign_tasks_to_servers(servers, tasks):
 assignments = []
 for task in tasks:
 best_server = None
 min_load_increase = float(“inf”)
 for server in servers:
 # Available resources calculation
 remaining_cpu = server[“cpu”]
 remaining_ram = server[“ram”]
 # Checking if the server can handle the tasks
 if task[“cpu_req”] <= remaining_cpu and task[“ram_req”]
<=remaining_ram:
 # Estimating server load increase
 load_increase = task[“cpu_req”] + task[“ram_req”]
 if load_increase < min_load_increase:
 best_server = server
 min_load_increase = load_increase

Technologies and Engineering, Vol. 25, No. 6, 202444

Virtualisation and network management...

 # Assigning a task to the best server
 if best_server:
 best_server[“cpu”] -= task[“cpu_req”]
 best_server[“ram”] -= task[“ram_req”]
 assignments.append({“task”: task[“id”], “server”: best_
server[“id”]})
 else:
 print(f”Task {task[‘id’]} could not be assigned due to limited
resources!”)
 return assignments

Algorithm execution
assignments = assign_tasks_to_servers(servers, tasks)

Results
print(“Distribution of tasks between servers:”)
for assignment in assignments:
 print(f”Task {assignment[‘task’]} -> Server {assignment[‘server’]}”)
print(“\nState of servers after distribution:”)
for server in servers:
 print(f”Server {server[‘id’]}: CPU={server[‘cpu’]}%,
RAM={server[‘ram’]}%”)

The code simulated the distribution of tasks across
servers, where each server had a limited amount of re-
sources, including CPU and RAM. Tasks required specific
amounts of these resources to execute. The algorithm se-
lected servers that best met the task requirements while
minimising overload. The results demonstrated how the
algorithm optimised task distribution by efficiently al-
locating tasks based on the available resources of each
server (Fig. 2).

assigned to servers in a manner that avoided exceeding
their resource limits: Server 1 processed the task with the
lowest resource requirement (Task A), Server 2 handled two
tasks (Tasks B and C), utilising maximum CPU but leaving
some RAM available, and Server 3 processed the task with
the highest total resource requirements (Task D), leaving
enough resources for potential additional tasks. This dis-
tribution demonstrated the efficiency of the algorithm in
utilising server capacity. However, in certain scenarios,
improvements could be made to account for more com-
plex metrics, such as better load balancing among servers.

Thus, the method of optimising resource allocation
through intelligent algorithms is a versatile approach
that ensures a high level of adaptability in managing
computing and network resources. Its key feature is the
ability to automatically adjust to changes in system load,
minimising the risks of downtime or overload. Intelligent
algorithms, including those based on Machine Learning,
consider not only the current state of resources but also
predict future usage. This predictive capability is critical
for maintaining stability in cloud environments, corpo-
rate data centres, and telecommunications networks. Due
to its flexibility, this method effectively scales to support
both small local infrastructures and large distributed sys-
tems. It also contributes to energy savings and the opti-
misation of operating costs.

Load forecasting using machine learning models
The second method is the load forecasting using Machine
Learning models (Fig. 3). This approach enables the predic-
tion of peak resource loads, the identification of potential
performance issues, and the proactive adaptation of in-
frastructure to efficiently handle tasks. Machine Learning
models, such as gradient boosting and neural networks,
are utilised to analyse historical resource usage data and
generate highly accurate forecasts. The load forecasting
process comprises the following stages: data collection
(recording information about resource utilisation (e.g.,
processors, memory, network usage) over a selected time
period), prior data processing (preparing the collected data
through normalisation, noise removal, and the selection
of significant parameters), model training (employing Ma-
chine Learning algorithms to develop a predictive model
based on the previously processed data), forecasting (using
the trained model to predict resource loads based on cur-
rent conditions and observed trends), resource adaptation
(optimising computing and network resources in response
to the forecasted loads).

Figure 2. Result of the task distribution
program between servers

Source: created by the author based on Online Python
Compiler (Interpreter)

The results showed that the algorithm successfully
distributed tasks across servers, considering their availa-
ble resources and minimising additional load. Tasks were

Figure 3. Load forecasting scheme
Source: created by the author

Resource monitoring Data processing (filtering) Forecasting (Machine Learning model)

Resource management (adaptation) Administrator’s message

Technologies and Engineering, Vol. 25, No. 6, 2024 45

Berestovenko

This approach is widely applied in cloud computing
and enterprise networks. For instance, it can be utilised to
predict and automate the scaling of computing resources
based on peak load values. Additionally, forecasting helps
maintain stable connectivity during periods of increased
network traffic. Furthermore, the analysis and prediction
capabilities enable the avoidance of server overload and
contribute to reducing energy consumption. Below, there is
an example of a basic linear regression algorithm for pre-
dicting resource usage:

import numpy as np

Resource usage data (CPU percentage)
timestamps = np.arange(1, 11) # Timestamps
cpu_usage = np.array([20, 30, 40, 50, 60, 70, 80, 90, 100, 110]) #
CPU usage

Linear regression for forecasting
def linear_regression(x, y):
 # Calculating linear regression coefficients
 n = len(x)
 mean_x, mean_y = np.mean(x), np.mean(y)
 b1 = np.sum((x - mean_x) * (y - mean_y)) / np.sum((x - mean_x)
** 2)
 b0 = mean_y - b1 * mean_x
 return b0, b1

Figure 4. Forecasting program result of the resource usage
Source: created by the author based on Online Python Compiler (Interpreter)

Value forecasting
def predict(x, b0, b1):
 return b0 + b1 * x

Model training
b0, b1 = linear_regression(timestamps, cpu_usage)

CPU forecast for the next period
next_timestamp = 11
predicted_cpu = predict(next_timestamp, b0, b1)

Output of results
print(“Coefficients of the model:”)
print(f”b0 (landslide): {b0:.2f}, b1 (incline): {b1:.2f}”)
print(f”Forecast CPU usage for the period {next_timestamp}:
{predicted_cpu:.2f}%”)

The code demonstrated the implementation of a
method for predicting CPU usage in virtualised environ-
ments using linear regression. The algorithm calculated
the coefficients of a regression model based on histori-
cal data on server loads from previous time periods and
generated a prediction for future CPU usage. The program
then output the model coefficients and provided a fore-
cast of CPU usage for a specific period (Fig. 4). This ap-
proach enabled operators to proactively manage resourc-
es, preventing server overload.

The results demonstrated that the linear regression
model successfully identified the relationship between
time (timestamps) and CPU usage. The calculated coef-
ficients of the regression equation indicated a linear in-
crease in CPU usage, with a step of 10% for each time pe-
riod starting from the initial value. Based on this model,
it was predicted that CPU usage in the next period would
reach 120%, signalling a potential system overload if re-
sources are not scaled accordingly. Thus, the load forecast-
ing method using Machine Learning models proved effec-
tive in predicting peak loads, enabling resource adaptation
and maintaining stable system operation. Algorithms such
as linear regression facilitated the analysis of historical
data and accurate prediction of future resource usage. The
implementation of this method involved several stages:
data collection and preprocessing, model training, fore-
casting, and infrastructure adaptation. The example above
illustrated that the model successfully predicts the rela-
tionship between time and CPU utilisation. This capability
allows operators to proactively manage resources, pre-
venting system overloads and improving energy efficiency.

Dynamic load balancing via software-defined networks
The third method for enhancing the efficiency of

virtualisation and network management is dynamic load
balancing through SDN technologies (Fig. 5). This ap-
proach enables centralised network management by au-
tomatically redirecting traffic flows between nodes to pre-
vent overload. SDN employs specialised controllers that
analyse the network status in real-time and make optimal
routing decisions. The main stages of implementing this
method include: network monitoring (real-time analy-
sis of network traffic, including metrics such as latency,
throughput, and node load), data analysis (evaluation
of the effectiveness of current routes and identification
of bottlenecks or problem areas), decision-making (SDN
controller generates optimal routing rules based on the
analysis), policy application (automatic updates of rout-
ing tables on network devices to implement the new rules).
The method is widely utilised in cloud environments, cor-
porate data centres, and carrier networks. For instance,
SDN technology enhances throughput and ensures low
latency when processing customer requests. In corporate
networks, it optimises the utilisation of existing infra-
structure by dynamically adapting to real-time changes.
Below, there is an example application that demonstrates
how an SDN controller distributes traffic between servers
based on their current load:

Technologies and Engineering, Vol. 25, No. 6, 202446

Virtualisation and network management...

Server data and their current load (in percent)
servers = [
 {“id”: 1, “load”: 30}, # Server 1 with 30% load
 {“id”: 2, “load”: 50}, # Server 2 with 50% load
 {“id”: 3, “load”: 70}, # Server 3 with 70% load
]

New requests for traffic processing (as a percentage of resources)
traffic_requests = [10, 20, 30, 15, 25] # Traffic to process

Function for dynamic traffic distribution
def distribute_traffic(servers, traffic_requests):
 assignments = []
 for traffic in traffic_requests:
 # Find a server with minimal load
 best_server = min(servers, key=lambda x: x[“load”])
 # Check if the server is able to handle the request
 if best_server[“load”] + traffic <= 100:
 # Assign request to server
 best_server[“load”] += traffic

 assignments.append({“traffic”: traffic, “server”: best_
server[“id”]})
 else:
 # If any server can process the request
 assignments.append({“traffic”: traffic, “server”: “No servers
available”})
 return assignments

Performing traffic distribution
assignments = distribute_traffic(servers, traffic_requests)

Output of results
print(“Distribution of traffic between servers:”)
for assignment in assignments:
 print(f”Traffic {assignment[‘traffic’]}% -> Server
{assignment[‘server’]}”)
print(“\nState of servers after distribution:”)
for server in servers:
 print(f”Server {server[‘id’]}: Loading={server[‘load’]}%”)

Network nodes

SDN controller

Traffic monitoring Network status analysis Route optimisation

Switch 1 Switch 2

Server 1 Server 2

Figure 5. Dynamic load balancing design
Source: created by the author

This code demonstrated the fundamental logic of load
balancing, dynamically distributing traffic requests across
servers based on their current load. If servers reached 100%
capacity, additional requests remained unprocessed, ena-
bling operators to identify the need for scaling or provi-
sioning additional resources (Fig. 6).

The results indicated that the system successfully dis-
tributed traffic among servers: Server 1 processed 45% of
requests, Server 2 handled 30%, and Server 3 managed 25%.
Consequently, the server load levels after executing the re-
quests were 75%, 80%, and 95%, respectively. Requests that
could not be processed due to resource limitations were
marked as not distributed. The evaluated method demon-
strated high efficiency in dynamic load management, par-
ticularly in large-scale, scalable systems. The application
of SDN technologies provided not only effective traffic bal-
ancing but also a flexible response to real-time changes in
network conditions. This contributed to increased network
stability, reduced latency, and more efficient resource uti-
lisation. In conclusion, the SDN architecture represents a
promising solution for automating network management
processes in modern corporate and cloud environments.

Automated policy-based resource management
The fourth method analysed was automated policy-based
resource management (Fig. 7). This approach enables au-
tomatic control over resource states by implementing
predefined policies. These policies are designed based
on specified metrics such as latency, resource utilisation,
and power consumption and are applied automatically,

Figure 6. Result of the SDN application
Source: created by the author based on Online Python
Compiler (Interpreter)

Technologies and Engineering, Vol. 25, No. 6, 2024 47

Berestovenko

without the need for administrator intervention. The im-
plementation of automated resource management involves
the following key stages: policy definition (establishing
conditions under which resources should be reallocated,
scaled, or optimised), infrastructure monitoring (collecting
data on the current state of virtualised resources, includ-
ing CPU usage, memory, and network performance), policy

compliance analysis (identifying deviations from prede-
fined conditions and making decisions for optimisation),
automatic execution (performing actions such as increas-
ing or decreasing computing power, migrating virtual ma-
chines, or balancing loads), reporting and policy adapta-
tion (implementing changes to policies to better align with
business requirements and real-world network conditions).

Figure 7. Automated policy-based resource management scheme
Source: created by the author

Resource monitoring (CPU, memory, network)

Policy compliance (checking downloads, or status)

Resource optimisation: Stable status:

Computing capacity
reducing/increasing

Virtual machines
transfer

No changes

Resource status update

This method is particularly effective in cloud com-
puting, where policies can be designed to minimise costs
or ensure high service availability. For instance, if a de-
crease in load occurs during nighttime hours, the poli-
cy would automatically reduce the number of allocated
resources, thereby lowering infrastructure costs. Below,
there is an example of an application for automated re-
source management:

Data on the current status of servers
servers = [
 {“id”: 1, “load”: 80, “status”: “active”},
 {“id”: 2, “load”: 20, “status”: “active”},
 {“id”: 3, “load”: 0, “status”: “inactive”},
]

Management policy
POLICY = {
 “max_load”: 90, # Maximum load for active servers (%)
 “min_load”: 10, # Minimum load to maintain active state (%)
}

Server status management function
def manage_servers(servers, policy):
 for server in servers:
 if server[“status”] == “active” and server[“load”] < policy[“min_
load”]:
 server[“status”] = “inactive” # Server shutdown
 elif server[“status”] == “inactive” and server[“load”] > 0:
 server[“status”] = “active” # Server enabling
 elif server[“load”] > policy[“max_load”]:
 print(f”Warning: Server {server[‘id’]} is overloaded!”)
 return servers

Management execution
updated_servers = manage_servers(servers, POLICY)

Output of results
print(“Updated server states:”)

for server in updated_servers:
 print(f”Server {server[‘id’]} - Load: {server[‘load’]}%, Status:
{server[‘status’]}”)

The program implemented the fundamental logic
of automated policy-based server health management.
It monitored the load of each server against predefined
thresholds. If a server was active but had a load below the
defined minimum, it was switched to an inactive state.
Conversely, if an inactive server received a load, it was acti-
vated. In cases where the load exceeded the maximum lim-
it, a warning was displayed. The program’s output provided
data on the updated states of the servers (Fig. 8). This ap-
proach demonstrates the potential of dynamic infrastruc-
ture management to enhance operational efficiency.

Figure 8. Result of automated server status management
Source: created by the author based on Online Python
Compiler (Interpreter)

The program’s results demonstrated how automated
management adjusted server states based on predefined
policies. Servers with low load levels (below 10%) were
transitioned to an inactive state to conserve resources,
while servers with acceptable load levels remained ac-
tive. Overloaded servers were monitored, with appropri-
ate alerts generated to notify operators. The method of

Technologies and Engineering, Vol. 25, No. 6, 202448

Virtualisation and network management...

automated policy-based resource management enabled the
infrastructure to dynamically adapt to fluctuating load lev-
els, minimising costs while ensuring stable performance.
By encompassing monitoring, analysis, action execution,
and policy adaptation, this method offers an effective solu-
tion for resource optimisation in cloud environments and
data centres.

Comparison of methods for improving virtualisation
and network management efficiency
In general, the methods examined are effective for vari-
ous scenarios involving virtualised environments and net-
works. Each method offers distinct advantages and limita-
tions, which must be carefully considered when selecting a
strategy for specific infrastructures (Table 1).

Table 1. Comparison of methods for improving virtualisation and network management efficiency

Source: created by the author

Each method has unique advantages and limitations.
Resource allocation optimisation using intelligent algo-
rithms and load forecasting with Machine Learning models
are particularly effective for enhancing performance and
anticipating future loads, making them ideal for cloud en-
vironments and virtualised infrastructures. Dynamic load
balancing through SDN offers high flexibility, making it
especially suitable for corporate networks and telecommu-
nications operators, where reducing latency and ensuring
real-time traffic stability are critical. Meanwhile, automat-
ed policy-based resource management excels in optimis-
ing costs and maintaining system stability, particularly in
cloud environments with highly dynamic loads. The choice
of the most appropriate method depends on the specific
task and the characteristics of the infrastructure. In some
cases, combining multiple methods may be the best ap-
proach to achieving optimal results.

Discussion
The results of this study demonstrated that resource al-
location optimisation and dynamic load balancing via
SDN are effective methods for enhancing the perfor-
mance of virtualised environments. In contrast, M. Korze-
nowski (2024) explored the application of virtualisation in
embedded systems, with a focus on software legacy support
and real-time requirements. While M. Korzenowski’s work
addressed the unique challenges of embedded systems
and security, the current study focused on more general
methods applicable to network environments. This broad-
er approach makes the methods particularly relevant for

telecommunications, enterprise networks, and cloud in-
frastructure industries. Similarly, S. Cherrared et al. (2019)
investigated the virtualisation of network functions in the
context of 5G, emphasising fault management in virtual-
ised environments. Their work provided a comprehensive
classification of recent advancements in fault management
research for virtualised networks. The current study com-
plements these findings by concentrating on dynamic load
balancing methods via SDN, addressing challenges related
to adaptability and optimisation under varying loads. This
makes the approach suitable for a wide range of network
environments.

The study demonstrated that optimising resource al-
location, dynamic load balancing through SDN, and au-
tomated resource management significantly enhance
network efficiency by reducing latency and increasing
stability. Similarly, Z. Ni & F. Zhao (2021) examined vir-
tualisation methods aimed at improving network efficien-
cy, particularly through resource utilisation optimisation
and energy consumption reduction. However, the current
study builds upon these results by emphasising load bal-
ancing and adaptation to changing conditions, thereby
further improving network performance. Additionally, the
work of D.Z. Admassu (2024) explored virtualisation within
the context of the Infrastructure as a Service (IaaS) model,
focusing on performance optimisation using hypervisors
and various virtualisation techniques. In comparison, the
methods presented in the current study prioritise load bal-
ancing and resource management, which enable greater
efficiency in dynamic network environments.

Method Advantages Limitations

Optimisation of resource allocation
through intelligent algorithms

Improving resource usage efficiency Possible difficulties in adapting to new
types of a workload

Reducing server overloads High computing capacity requirements in
the framework of algorithm trainingAdaptation to changing conditions

Load forecasting using Machine Learning
models

High forecasting accuracy
Need for large amounts of historical data

Preparing for peak loads
Reducing possible resource overload Need for regular model updates

Dynamic load balancing through SDN
technologies

Centralised network management
High infrastructure requirements

(especially for large networks)Bandwidth optimisation and latency
reduction

Traffic routing flexibility Potentially complicated setup process

Automated policy-based resource
management

Management automation Limitations on flexibility due to rigid
policies

Cost reduction through resource
optimisation Possible difficulty in adapting policies to

new requirements
Increasing resource availability

Technologies and Engineering, Vol. 25, No. 6, 2024 49

Berestovenko

This paper analysed methods for optimising networks
using SDN and automated resource management to en-
hance the efficiency of virtualised environments. Converse-
ly, G. Saadon et al. (2019) proposed an architecture with an
additional layer of virtualisation to improve the manage-
ment of 5G and IoT networks, enabling real-time changes
to network services without interruption. Compared to this
approach, the current study emphasises the integration
of intelligent algorithms and load balancing for more ef-
ficient resource management and adaptation to dynamic
network conditions. In contrast, the study by A. Sananta-
graha & E. Mahadewi (2024) focused on reducing operating
costs and server consolidation for small and medium-sized
enterprises. The current research, however, explores more
generalised methods for optimising virtualised networks,
such as resource allocation through intelligent algorithms
and dynamic load balancing via SDN. Thus, the conduct-
ed research complements prior work by focusing on larg-
er-scale approaches to efficient resource management, ap-
plicable across various network infrastructures.

Overall, this study demonstrated that the developed
approaches can significantly reduce delays and enhance
resource efficiency in virtualised environments. Similarly,
S. Dubba & B.R. Killi (2024) focused on minimising delays
by optimising the scheduling of service function chains.
The findings of the current study align with their con-
clusions on the importance of integrating delay manage-
ment into network processes. However, this study further
emphasises the effectiveness of centralised traffic man-
agement via SDN in modern networks. In contrast, P.A.
Wijesekara (2024) examined the use of blockchain tech-
nologies to ensure security and reliability in virtualised
networks. While the results of P.A. Wijesekara’s work ex-
pand the understanding of security by introducing block-
chain as a management mechanism for protecting and
enhancing the efficiency of virtual networks, the current
study centres on practical approaches for optimising net-
work performance. These include dynamic load balancing,
adaptive resource allocation, and infrastructure manage-
ment automation, collectively aimed at improving overall
network efficiency.

In contrast to the generalised thematic findings of
R.M. Sarala et al. (2024), which emphasised the role of dig-
italisation and virtualisation in technology transfers and
strategic partnerships, the current study proposed software
implementations to directly enhance infrastructure effi-
ciency. While R.M. Sarala et al. focused on strategic and or-
ganisational contexts, this study addresses technical chal-
lenges in real-world scenarios. The findings of the current
study demonstrate the practical application of methods for
optimising the performance of virtualised environments,
with a focus on improving resource allocation efficien-
cy and automating management processes. Similarly, the
work of H. Ni & L. Yan (2024) proposed an enhanced al-
gorithm for task allocation optimisation using mathemat-
ical modelling and CloudSim for simulation. However, the
current study prioritises the implementation of software

solutions for management in real-world scenarios. Thus,
the current research not only corroborates the conclusions
of the aforementioned authors regarding the effectiveness
of optimising virtualised environments but also introduc-
es practical approaches for integrating these methods into
complex network infrastructures.

While this study demonstrates the effectiveness of re-
source optimisation and load balancing in enhancing the
performance of virtualised networks, the work of A. Cortés
Castillo (2024) analysed the integration of Network Func-
tions Virtualisation (NFV) in Information-Centric Net-
works (ICNs), highlighting cost reductions through data
reuse in the Content Router. Both studies underscore the
importance of scalable and adaptive solutions for modern
networks; however, the current research focuses on the
practical implementation of performance optimisation
techniques. This study specifically emphasises improving
the efficiency of NFV through resource optimisation and
load balancing, which reduce latency and enhance per-
formance in cloud environments. Similarly, the work of
J. Yan et al. (2021) also examined NFV but approached it
from a security perspective, proposing decentralised certif-
icate management using blockchain technology to address
certificate revocation challenges in 5G networks. While
both studies tackle critical challenges of NFV with emerg-
ing technologies, the current research offers a broader
range of applications aimed at improving performance and
operational efficiency.

This study presented methods for optimising the per-
formance of virtualised networks using intelligent algo-
rithms and technologies, while the study by S. Lekkala &
P. Gurijala (2024) focused on ensuring security in cloud and
virtualised environments. The current work supports the
conclusions of these authors regarding the importance of
optimising the operation of such environments but places
greater emphasis on improving performance rather than
security. Additionally, G. Manogaran et al. (2021) proposed
a Service Virtualisation and Flow Management Framework
for efficient resource utilisation in a 6G cloud environment,
particularly targeting load balancing and request distribu-
tion. The findings of this study align with their conclusions
on resource optimisation but concentrate on alternative
methods for enhancing network performance.

The results of this study corroborate the findings of
J.-I. Kani et al. (2024) regarding the application of disag-
gregation and virtualisation technologies in optical access
networks to enhance flexibility and drive network advance-
ments. While the current work also focuses on virtualis-
ation to improve network efficiency, its primary emphasis
is on increasing performance through dynamic load bal-
ancing and resource optimisation, rather than solely on
access flexibility. Similarly, W. Wysocki et al. (2024) high-
lighted the use of virtualisation technologies to enhance
cyber resilience in both new and legacy defense systems.
Although the current study confirms the importance of
virtualisation for optimising network resources, its focus
lies in improving performance through load management

Technologies and Engineering, Vol. 25, No. 6, 202450

Virtualisation and network management...

and resource balancing, rather than addressing specific as-
pects of cybersecurity or cyber resilience as explored in the
aforementioned study.

The findings of the present study emphasise optimis-
ing resource allocation and load balancing in cloud and
virtualised networks, whereas Z. Xu et al. (2021) focused on
using Network Functions Virtualisation (NFV) and dynam-
ic spectrum management to enhance communication be-
tween unmanned aerial vehicles (UAVs). Thus, the current
work complements the aforementioned study by extend-
ing the approach to general network performance optimi-
sation, beyond spectrum management. Similarly, X. Li et
al. (2024) proposed a method for virtualising the payload
of UAVs to improve system interoperability and scalability.
The results of the present study, which focus on optimising
network resource allocation and load balancing in cloud
and virtualised environments, complement this work by
addressing broader aspects of resource optimisation and
load balancing in networks. These findings are also ap-
plicable to UAV systems, demonstrating their versatility
across different technological domains.

Finally, the current results emphasise improving the
efficiency of virtualisation in networks, particularly in
cloud environments. This complements the work of E. Tor-
res et al. (2024), who explored the use of virtualisation in
electrical substations to create more flexible and resilient
networks. While both studies underscore the importance of
virtualisation, the current study focuses more on network
functions and performance, while the researcher concen-
trated on critical energy infrastructures. In contrast, the
study by A. Bhatia et al. (2024) examined the virtualisation
of Electronic Control Units (ECUs) within the context of
automotive software development. The current study di-
verges by addressing the performance optimisation of
network functions in cloud and virtualised environments.
By improving resource allocation and load management
through intelligent algorithms, this research enables bet-
ter scalability and greater network stability.

Therefore, this study complements previous work by
offering practical solutions for integrating resource opti-
misation methods, adaptive load balancing, and infrastruc-
ture management automation, significantly enhancing the
efficiency of virtualised networks.

Conclusions
The study identified and analysed the main methods for
improving the efficiency of virtualisation and network

management, namely: optimising resource allocation
through intelligent algorithms, load forecasting using Ma-
chine Learning models, dynamic load balancing through
SDN technologies, and automated resource management
based on policies. It was found that resource allocation op-
timisation is a powerful tool for increasing the efficiency of
computing power use, particularly in cloud environments.
Conversely, load forecasting enables the infrastructure to
adapt to changing loads, ensuring readiness for peak peri-
ods. Additionally, dynamic load balancing optimises traffic
routing, reducing delays and improving network stability,
which is crucial for large corporate environments. Auto-
mated resource management, in turn, effectively reduc-
es costs and maintains system stability under changing
load conditions. A comparative analysis of these methods
demonstrates that their effective combination can pro-
vide optimal infrastructure management: load forecasting
prepares resources in advance, optimisation ensures their
efficient use, balancing maintains network stability, and
automation reduces costs while increasing the speed of re-
sponse to changes.

However, the study has certain limitations. First, the
methods considered require significant computing resourc-
es for their implementation, which may be a constraint for
small and medium-sized enterprises. Second, some ap-
proaches depend on large volumes of historical data for
accurate forecasting, which may not always be available
in real-world scenarios. Furthermore, implementing soft-
ware-defined networking and containerisation technolo-
gies requires specialised expertise, potentially complicat-
ing adoption.

In the future, the results could be improved by devel-
oping more flexible and adaptive models that consider a
broader range of variable factors. Additionally, further re-
search should explore the integration of the proposed ap-
proaches with emerging technologies, such as 5G and the
Internet of Things (IoT), which present new opportunities
for optimising virtualised environments and network sys-
tems. Efforts should also continue to minimise the compu-
tational requirements of these methods to facilitate their
application in real-world conditions.

Acknowledgements
None.

Conflict of Interest
None.

References
[1] Admassu, D.Z. (2024). Performance improvement of IaaS type of cloud computing using virtualisation technique.

doi: 10.48550/arXiv.2410.00395.
[2] Bhatia, A., Deol, I., Yenubothula Anand, A., & Sharma, M. (2024). ECU virtualisation: Key enabler for virtual validation.

doi: 10.13140/RG.2.2.14768.78087.
[3] Cherrared, S., Imadali, S., Fabre, E., Gössler, G., & Ben Yahia, I. (2019). A survey of fault management in network

virtualisation environments: Challenges and solutions. IEEE Transactions on Network and Service Management, 16(4),
1537-1551. doi: 10.1109/TNSM.2019.2948420.

https://doi.org/10.48550/arXiv.2410.00395
https://doi.org/10.13140/RG.2.2.14768.78087
https://doi.org/10.1109/TNSM.2019.2948420

Technologies and Engineering, Vol. 25, No. 6, 2024 51

Berestovenko

[4] Cortés Castillo, A. (2024). An overview of integration of the virtualisation of network functions in the context of information
centric networks. doi: 10.48550/arXiv.2408.01910.

[5] Dubba, S., & Killi, B.R. (2024). End to end delay aware service function chain scheduling in network function
virtualisation enabled networks. Peer-to-Peer Networking and Applications, 17(6), 3883-3904. doi: 10.1007/s12083-
24-01800-0.

[6] Hassan, M.K., Sayed Ariffin, S.H., Syed-Yusof, S.K., Ghazali, N.E., & Obeng, K.A. (2023). A short review on the dynamic
slice management in software-defined network virtualisation. Engineering, Technology & Applied Science Research,
13(6), 12074-12079. doi: 10.48084/etasr.6394.

[7] Javadpour, A. (2020). Improving resources management in network virtualisation by utilising a software-based network.
doi: 10.48550/arXiv.2004.09193.

[8] Kani, J.-I., Suzuki, T., Kimura, Y., Kaneko, S., Kim, S.-Y., & Yoshida, T. (2024). Disaggregation and virtualisation for
future access and metro networks. Journal of Optical Communications and Networking, 17(1), A1-A12. doi: 10.1364/
JOCN.534303.

[9] Khan, U.S., & Mahboob, T. (2024). Network softwarization and virtualisation: Management of QoS in wireless
and mobile networks. In Quality of Service (QoS) – Challenges and Solutions. London: IntechOpen. doi: 10.5772/
intechopen.1007181.

[10] Korzenowski, M. (2024). Virtualisation – The power and limitations for military embedded systems – A structured decision
approach. doi: 10.4271/2024-01-3126.

[11] Kramarenko, І., & Kurbatov, О. (2024). Virtualisation of business processes of trade enterprises in the financial and
economic security management system. Problems of Modern Transformations. Series: Economics and Management, 14.
doi: 10.54929/2786-5738-2024-14-04-11.

[12] Lekkala, S., & Gurijala, P. (2024). Cloud and virtualisation security considerations. In S. Lekkala & P. Gurijala (Eds.),
Security and privacy for modern networks (pp. 143-154). Berkeley: Apress. doi: 10.1007/979-8-8688-0823-4_14.

[13] Li, X., Zhou, X., Zhang, Y., Yao, Y., & Yang, G. (2024). UAV payload virtualisation based on the unified driving
and capability abstraction. Journal of Northwestern Polytechnical University, 42(3), 406-416. doi: 10.1051/
jnwpu/20244230406.

[14] Manasyan, A. (2022). Network management automation through virtualisation. Mathematical Problems of Computer
Science, 58, 91-98. doi: 10.51408/1963-0096.

[15] Manogaran, G., Baabdullah, T., Rawat, D.B., & Shakeel, P. (2021). AI-assisted service virtualisation and flow
management framework for 6G-enabled cloud-software-defined network-based IoT. IEEE Internet of Things Journal,
9(16), 14644-14654. doi: 10.1109/JIOT.2021.3077895.

[16] Moradi, M., Ahmadi, M., & Pourkarimi, L. (2024). Virtualised network functions resource allocation in network
functions virtualisation using mathematical programming. Computer Communications, 228, article number 107963.
doi: 10.1016/j.comcom.2024.107963.

[17] Neyigapula, B.S. (2023). Deep reinforcement learning for resource management in network function virtualisation.
doi: 10.21203/rs.3.rs-3239087/v1.

[18] Ni, H., & Yan, L. (2024). Design and implementation of virtualisation cloud computing system intelligent terminal
application layer. Journal of ICT Standardization, 12(2), 163-188. doi: 10.13052/jicts2245-800X.1222.

[19] Ni, Z., & Zhao, F. (2021). Research and implementation of network security management based on virtualisation
technology. Journal of Physics Conference Series, 1802(4), article number 042070. doi: 10.1088/1742-6596/1802/4/042070.

[20] Romanov, O., Burlaka, H., Berestovenko, O., & Pidpalyi, O. (2023). Technical features of building a li-fi network
using SDN management methods. Bulletin of Cherkasy State Technological University, 28(3), 16-25. doi:
10.24025/2306-4412.3.2023.284893.

[21] Saadon, G., Haddad, Y., & Simoni, N. (2019). Dynamic architecture based on network virtualisation and distributed
orchestration for management of autonomic network. In Proceedings of the 15th International conference on network
and service management (pp. 1-5). Halifax: IEEE. doi: 10.23919/CNSM46954.2019.9012731.

[22] Sanantagraha, A., & Mahadewi, E. (2024). The role of virtualisation technology to increase operational cost
efficiency of Indonesian SMEs: Case study of internet service providers. International Journal of Science Technology &
Management, 5(5), 1050-1058. doi: 10.46729/ijstm.v5i5.1161.

[23] Sarala, R.M., Tarba, S.Y., Zahoor, N., Khan, H., Cooper, C., & Arslan, A. (2024). The impact of digitalisation and
virtualisation on technology transfer in strategic collaborative partnerships. The Journal of Technology Transfer.
doi: 10.1007/s10961-024-10158-7.

[24] Torres, E., Eguia, P., Abarrategui, O., Larruskain, M., Valverde, V., & Buigues, G. (2024). Virtualisation in substations:
Technologies and applications. Renewable Energies and Power Quality Journal, 2, 269-275. doi: 10.24084/reepqj24.419.

[25] Vasylkivskyi, М., Boldyreva, О., Vargatyuk, H., & Budash, М. (2023). Management of telecommunication networks
using AI/MI technologies. Measuring and Computing Devices in Technological Processes, 1, 89-100.
doi: 10.31891/2219-9365-2023-73-1-13.

https://doi.org/10.48550/arXiv.2408.01910
https://doi.org/10.1007/s12083-024-01800-0
https://doi.org/10.1007/s12083-024-01800-0
https://doi.org/10.48084/etasr.6394
https://doi.org/10.48550/arXiv.2004.09193
https://doi.org/10.1364/JOCN.534303
https://doi.org/10.1364/JOCN.534303
https://doi.org/10.5772/intechopen.1007181
https://doi.org/10.5772/intechopen.1007181
https://doi.org/10.4271/2024-01-3126
https://doi.org/10.54929/2786-5738-2024-14-04-11
https://doi.org/10.1007/979-8-8688-0823-4_14
https://doi.org/10.1051/jnwpu/20244230406
https://doi.org/10.1051/jnwpu/20244230406
https://doi.org/10.51408/1963-0096
https://doi.org/10.1109/JIOT.2021.3077895
https://doi.org/10.1016/j.comcom.2024.107963
https://doi.org/10.21203/rs.3.rs-3239087/v1
https://doi.org/10.13052/jicts2245-800X.1222
https://doi.org/10.1088/1742-6596/1802/4/042070
https://doi.org/10.24025/2306-4412.3.2023.284893
https://doi.org/10.24025/2306-4412.3.2023.284893
https://doi.org/10.23919/CNSM46954.2019.9012731
https://doi.org/10.46729/ijstm.v5i5.1161
https://doi.org/10.1007/s10961-024-10158-7
https://www.reepqj.com/v2/419-24-torres.pdf
https://doi.org/10.31891/2219-9365-2023-73-1-13
https://doi.org/10.31891/2219-9365-2023-73-1-13

Technologies and Engineering, Vol. 25, No. 6, 202452

Virtualisation and network management...

Віртуалізація та керування мережею:
найкращі методи підвищення ефективності

Олександр Берестовенко
Аспірант
Національний технічний університет України
“Київський політехнічний інститут імені Ігоря Сікорського”
03056, просп. Берестейський, 37, м. Київ, Україна
https://orcid.org/0000-0003-4887-4674

Анотація. Метою роботи було визначення оптимальних підходів до підвищення ефективності процесів
мережевого менеджменту та віртуалізації. Під час дослідження було розглянуто чотири ключові методи:
оптимізація розподілу ресурсів за допомогою інтелектуальних алгоритмів, прогнозування навантаження з
використанням моделей Machine Learning, динамічне балансування навантаження за допомогою технологій
програмно-визначених мереж, а також автоматизоване управління ресурсами на основі політик. Основні результати
включали детальний аналіз кожного із запропонованих методів, а саме опис їхніх принципів роботи та етапів
впровадження. У дослідженні були представлені схеми, які демонструють архітектуру та механізми функціонування
цих методів, а також наведено приклади їх практичного застосування в різних інфраструктурах, таких як хмарні
середовища, програмно-визначені мережі та корпоративні дата-центри. Крім того, показано програмні реалізації
на мові Python, які дозволили наочно продемонструвати роботу запропонованих підходів. Загалом, результати
вказали, що оптимізація розподілу ресурсів забезпечила ефективне використання обчислювальних потужностей
у хмарних середовищах, а прогнозування навантаження допомагло заздалегідь адаптувати інфраструктуру до
пікових періодів активності. Балансування навантаження на основі програмно-визначених мереж дозволило
централізовано керувати трафіком і знижувати затримки, що є критичним для сучасних корпоративних мереж.
Автоматизоване управління ресурсами за допомогою політик забезпечило зниження витрат та підтримку
стабільності систем шляхом гнучкого реагування на зміну навантаження. В свою чергу, проведене порівняння
методів показало, що кожен із методів має свої переваги та обмеження, які потрібно враховувати залежно від
специфіки інфраструктури. Отримані результати підтверджують доцільність застосування розглянутих підходів
для підвищення продуктивності та стабільності віртуалізованих середовищ і мережевих систем

Ключові слова: розподіл обчислювальних ресурсів; прогнозування навантаження; динамічне балансування;
автоматизація процесів; оптимізація трафіку

[26] Wijesekara, P.A. (2024). Network virtualisation utilising blockchain: A review. Journal of Applied Research in Electrical
Engineering, 3(2), 136-158. doi: 10.22055/jaree.2024.46144.1110.

[27] Wysocki, W., Price, G., Friedman, S., & Conage, A. (2024). Advanced cyber testing with virtualisation. doi: 10.4271/2024-
01-3893.

[28] Xu, Z., Petrunin, I., & Tsourdos, A. (2021). Dynamic spectrum management with network function virtualisation for
UAV communication. Journal of Intelligent & Robotic Systems, 101, article number 40. doi: 10.1007/s10846-021-01318-0.

[29] Yan, J., Yang, B., Su, L., He, S., & Dong, N. (2021). Decentralised certificate management for network function
virtualisation (NFV) implementation in 5G networks. In J. Xiong, S. Wu, C. Peng & Y. Tian (Eds.), Mobile multimedia
communications (pp. 81-93). Cham: Springer. doi: 10.1007/978-3-030-89814-4_6.

[30] Yang, K., & Xu, Y. (2024). CNN based resource management for D2D networks with wireless networks virtualisation.
In W. Wang, X. Liu, Z. Na & B. Zhang (Eds.), Communications, signal processing, and systems (pp. 31-40). Singapore:
Springer. doi: 10.1007/978-981-99-7505-1_4.

https://orcid.org/0000-0003-4887-4674
https://doi.org/10.22055/jaree.2024.46144.1110
https://doi.org/10.4271/2024-01-3893
https://doi.org/10.4271/2024-01-3893
https://doi.org/10.1007/s10846-021-01318-0
https://doi.org/10.1007/978-3-030-89814-4_6
https://doi.org/10.1007/978-981-99-7505-1_4

