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Abstract. The purpose of the study was to analyse and generalise modern methods for recognising UML diagrams in 
images. The main focus was on automated extraction of text and graphic elements to further reproduce models in text 
formats. The research methodology covered the analysis of scientific publications, which included 23 papers available 
in open sources. The study focused on exploring existing approaches to recognising UML diagrams in images. Analysis 
of scientific publications has shown what modern methods of UML diagram recognition allow achieving more than 90% 
accuracy in recognising UML diagrams in images. The advantages, limitations, and effectiveness of classical algorithms 
for computer vision, machine learning, and deep neural networks were investigated. It was found that the best results 
in classification were provided by deep neural networks, while classical algorithms remain effective for interpreting and 
extracting elements of UML diagrams. It was found that the main areas in the field of UML diagram recognition are 
classification of UML diagram types, and interpretation and conversion of UML images to text formats. The main problems 
were identified: poor image quality, limited training data, and format variability. Possible areas of further research 
are presented, such as creating large annotated sets of UML diagrams to improve accuracy, and summarising modern 
approaches to support recognition of more chart types. The findings will contribute to improving the automation processes 
for working with UML diagrams, and provide an understanding of the current state of the information technology and 
software development industry, opening up new prospects for development
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Introduction
UML (Unified Modelling Language) diagrams provide a 
standardised, structured representation of system archi-
tecture, which significantly improves communication be-
tween development participants, in particular, program-
mers, system architects, and analysts. However, with the 
growing number and complexity of software projects, the 
need for automating the processing of UML diagrams be-
came more acute, especially in terms of recognising infor-
mation directly from graphic images, which further allows 
integrating the obtained data into development processes, 
search information systems, etc.

In the modern world of information technology and soft-
ware development, UML diagrams play an important role in 
the process of system design, visualisation, and documenta-
tion of software systems. According to a survey in this area, 
UML diagrams are the most common standard diagrams 

for design modelling and reach 67% (Chen  et al.,  2022).
Research shows that most UML diagrams are stored 

and distributed as images. In particular, based on the re-
sults of a large-scale study by R. Hebig et al.  (2016), con-
ducted on the basis of models stored in various formats on 
GitHub, 93,596 UML models from 24,717 different reposi-
tories were automatically processed and partially manually 
analysed. Of this number, 57,822 models (61.8%) were pre-
sented in image format, while the rest were presented in 
.xml or .uml formats.

More recent studies by F. Chen et al. (2022) showed that 
73.72% of UML diagrams collected from projects on GitHub 
were stored as bitmaps (PNG, JPG, BMP, GIF, etc.), while the 
remaining 26.28% were stored in text format. Therefore, 
since UML models are often stored as images embedded in 
documents, the original versions of the model’s text format 
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are easily lost. This makes it difficult to use and evolve such 
models, as it becomes impossible to quickly edit, integrate, 
and update them in new environments. The researchers 
proposed ReSECDI, a method designed to automatically 
recognise semantic elements (such as classes, relation-
ships) in UML class diagram images. Their approach uses 
classical image processing technologies, including cluster-
ing rectangles and combining lines. Problems such as dif-
ferent chart resolutions and styles are solved, depending 
on the tools in which these charts were created. Despite 
achieving an accuracy rate of about 90%, the study focus-
es mainly on UML class diagrams and does not cover other 
types of UML diagrams or broader methodological issues.

S.  Shcherban  et al.  (2021a) developed a neural net-
work-based approach for classifying four types of UML 
diagrams, including class, activity, sequence, and use case 
diagrams. Their study used convolutional neural networks 
(CNNs) and achieved a high accuracy of more than 90% in 
classifying various types of diagrams. However, it was lim-
ited to the task of classification and did not consider the 
extraction of structural or semantic elements. A. Conrardy 
& J.  Cabot  (2024) investigated the use of large language 
models to transform UML class diagrams into formal ma-
chine-readable representations such as PlantUML. Al-
though their approach was innovative, it focused only on 
converting handwritten diagrams and highlighted the lim-
itations of the LLM (Large Language Model), such as the 
dependence on quality hints.

M.  Axt  (2023) introduced SketchToPlantUML, a tool 
for converting sketchy UML class diagrams to formal Plan-
tUML models using OpenCV. The tool focuses on preproc-
essing and segmenting static images, but has difficulties 
with more complex relationships such as associations and 
dependencies. V. Moreno et al. (2020) developed a machine 
learning tool for classifying static UML diagrams from 
web images. Their approach achieves 95% accuracy by us-
ing rule induction, but does not consider textual content, 
which limits its capabilities for semantic analysis.

A.  Koenig  et al.  (2023) developed NEURAL-UML, a 
training framework for identifying and classifying semantic  
elements in UML class diagrams. The study presented a new 

annotated data set for training and evaluated the model on 
complex diagrams, achieving accuracy rates of more than 
90%. Statistics highlighted the importance of research in 
this area and pointed out the need for efficient methods 
that can automatically process, classify, and extract con-
tent from UML diagrams stored in various graphic formats. 
M. Baraban et al. (2021) investigated the features of using 
intelligent technologies for the problem of image recog-
nition. This is especially relevant in the context of rapid 
growth in data volumes and the number of UML diagrams 
that require fast and accurate analysis.

These studies focus on specific aspects of UML dia-
gram recognition, such as classification of chart types, 
identification of semantic elements, or transformation 
of thumbnails into formal models. However, as of the 
beginning of 2025, there was no comprehensive review 
of existing approaches or comprehensive analysis of key 
challenges of UML diagram recognition, so the purpose 
of the study was to systematise available sources and 
implement a generalised analysis of UML diagram recog-
nition methods to provide a holistic vision of problems, 
challenges, and trends.

The objectives of this study included:
♦ To analyse classical image processing methods used 

to recognise UML diagrams.
♦ To overview current approaches using machine 

learning and deep learning for UML diagram recognition.
♦ To identify current trends and major challenges faced 

by researchers and practitioners in the industry.

Materials and Methods
The main method of research was the analysis of 23 scien-
tific publications that were publicly available. It included 
searching for relevant sources in scientific databases such 
as IEEE Xplore, Springer, Scopus, Web of Science, and open 
archives such as arXiv. For the selection of materials, cri-
teria such as relevance of the topic (recognition of UML di-
agrams, in particular, classification, extraction of semantic 
elements, image processing), and the availability of exper-
imental data or descriptions of the methods were used. Ta-
ble 1 contains a list of papers that were considered.

Research paper Subject area

E. Lank et al. (2000)

Extraction of elements and recognition of UML 
semantics in images

B. Karasneh & M.R.V Chaudron (2013)

T. De-Wyse et al. (2018)

F. Chen et al. (2022)

M. Axt (2023)

A. Koenig et al. (2023)

A. Conrardy & J. Cabot (2024)

T. Hammond & R. Davis (2006)

Table 1. Research papers that have been considered and their subject areas
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The study stages included several consecutive steps. 
First, relevant papers were searched and collected in the 
above-mentioned databases. Further, the collected papers 
were grouped by area, which allowed structuring the analy-
sis. The next step was to extract key information from each 
paper, such as the tasks set by the authors (classification of 
UML diagrams, recognition of semantics, etc.), and the ap-
proaches to solving these problems themselves, including 
data on the accuracy of methods, their speed, and the amount 
of data used. The collected information was organised into 
tables and charts for further evaluation. The final stage was 
the generalisation of the obtained data to systematise ex-
isting approaches and formulate conclusions at each stage.

The classification method was used to systematise the 
collected data. The publications were grouped into catego-
ries: problems solved by researchers, solution methods (in 
particular, native algorithms, classical machine learning 
methods, deep learning), and types of UML diagrams that 
were studied. Challenges for recognising UML diagrams 
were detected during the analysis of papers. Each paper 
was analysed to identify key approaches, algorithms used, 
and their effectiveness. In addition, the statistical analysis 
method was applied. Quantitative data on the accuracy of 
classification of UML diagrams, the amount of data used 
for training models, and the percentage of correctly rec-
ognised semantic elements were collected. The collected 
information was structured in the form of tables and dia-
grams for further analysis.

Key indicators for evaluating methods were recog-
nition accuracy, quantity, and quality of data for training 
and testing, algorithm execution time (if specified by the 
authors), and universality, i.e., the ability to apply meth-
ods to different types of UML diagrams, rather than just a 
specific type. The methods were evaluated in three sepa-
rate groups: classical machine learning algorithms, deep 
learning methods, and proprietary algorithms. In addition, 
aspects such as noise resistance, variable chart styles, and  

adaptability to different working conditions were consid-
ered. The chosen methodology ensured reproducibility of 
the study, since all stages of data collection and analysis are 
described, and all sources used have links for verification.

Results and Discussion
As part of the study, modern approaches to UML diagram 
recognition were classified, including classical computer 
vision algorithms, machine learning methods, and neural 
networks. Special attention was paid to analysing the ef-
fectiveness of methods, their limitations, and prospects. 
The main trends in the use of deep neural networks and 
large language models for automating UML diagram pro-
cessing were presented. 

Classification of UML diagrams by subject areas
In the field of UML diagram recognition in images, re-
searchers have focused on solving a number of problems 
related to automatic processing, classification, and inter-
pretation of graphic information. Given the growing need 
for tools that can effectively work with UML models stored 
as images, various research initiatives are focused on creat-
ing solutions to automate these processes. The main areas 
of research were classification of chart types, interpretation 
and recognition of UML structural elements, and conversion 
of images to formats suitable for use in design software.

Among the scientific publications available in open 
sources, 23 papers were identified that dealt with the task 
of recognising UML diagrams in images. Figure 1 shows the 
main research areas in the field of UML diagram recogni-
tion and processing – classification and conversion of UML 
images to XML (Extensible Markup Language). The rest of 
the papers were difficult to group and assign to a separate 
area, because they are focused on solving and researching 
specific problems, such as analysing the complexity of the 
system architecture or finding the model’s compliance 
with standardised rules for plotting diagrams, etc.

Research paper Subject area

V. Moreno et al. (2020)

Classification of UML diagrams

B. Gosala et al. (2021)
S. Shcherban et al. (2021a)
S. Shcherban et al. (2021b)
L. Wang et al. (2022)
J. Hjaltason & I. Samúelsson (2014)
T. Ho-Quang et al. (2014)
M.H. Osman et al. (2018)
S. Rashid (2019)
G. Bergström et al. (2022)

Other

J. Ott et al. (2019)
S.W. Munialo et al. (2020)
R. Hebig et al. (2016)
M. Baraban et al. (2021)
A. Jha (2019)

Table 1. Continued

Source: compiled by the author
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Classification of UML diagrams consists of determin-
ing whether an image belongs to UML diagrams, and divid-
ing diagrams into types such as classes, sequences, states, 
etc. This process automates image analysis using charac-
teristics inherent in UML diagrams, including shapes, text 
elements, semantic attributes, and other properties. In 
general, the classification of UML images can be divided 
into two types (Jha et al., 2019), in particular:

♦ Binary classification  – a classification that gives a 
“yes” or “no” answer to a given question. It is used when 
it is necessary to determine whether an object belongs to 
a certain category. For example, in the case of UML dia-
grams, binary classification can determine whether a giv-
en image is a UML diagram.

♦ Multiclass classification – a classification that allows 
dividing objects into several different categories. In the 
context of UML diagrams, multiclass classification can help 
to automatically recognise which of the many UML types a 
model image belongs to (for example, a class diagram, se-
quence diagram, state diagram, etc.).

Various approaches to automatic classification of UML 
diagrams are presented in the scientific literature. T. Ho-
Quang  et al.  (2014) investigated the possibility of auto-
matic classification of UML class diagrams using image 
analysis and machine learning methods. The paper offers 
a set of 23 features describing the structure of diagrams, 
and experiments with various classification algorithms 
are performed. The researchers focus on identifying the 
most informative features for recognising UML classes, 
and on the need to create databases of UML diagrams, 
which is the basis for academic research. S. Rashid (2019) 
proposed extending methods for automatic classification 
of UML diagrams by adding recognition of UML sequenc-
es. The main focus is on the development of sequence 
analysis algorithms based on machine learning meth-
ods. This study is a continuation of previous research in 
the field of automatic recognition of UML diagrams and 
demonstrates the potential for extending classification to 
other types of UML models.

V. Moreno et al. (2020) investigated the possibility of au-
tomatic classification of UML diagrams among web images 
using machine learning techniques. The main contribution 
of the study is the creation of a large sample of UML images, 
which helped to train the model to effectively separate UML 
diagrams from irrelevant graphic diagrams. The proposed 
method is aimed at improving the accuracy of search en-
gines and automating the analysis of software repositories.

B.  Gosala  et al.  (2021) presented an approach to au-
tomatic classification of UML class diagrams using deep 
learning using convolutional neural networks (CNN). The 
researchers considered the advantages of CNNs over clas-
sical machine learning methods and evaluated the impact 
of various hyperparameters on the quality of recognition. 
The proposed method provides high automation of the 
UML image analysis process, but its effectiveness may de-
pend on the size and quality of the training sample. The 
researchers also pointed out the limited availability of UML 
diagram repositories and the importance of creating open 
and high-quality repositories. J. Ott et al. (2019) reviewed 
the use of low-shot learning for classifying UML diagrams, 
which allows efficient training of models on small data 
samples. The researchers showed that even with a limited 
number of training examples, it is possible to achieve high 
accuracy in classifying UML classes and sequences. The 
study demonstrated the possibilities of optimising educa-
tional processes in UML image recognition.

S. Shcherban et al.  (2021b) presented an approach to 
multiclass classification of UML diagrams, which includes 
recognition of class diagrams, sequences, activities, use 
cases, and other types of UML. Deep learning was used, 
namely, popular neural architectures with transfer learn-
ing. The study made a significant contribution to expand-
ing the capabilities of automatic analysis of UML diagrams, 
which contributes to the creation of scalable systems for 
processing software models. Since images are one of the 
most common formats for storing and sharing UML dia-
grams, determining whether they belong to UML notation 
and classifying them by type is an important condition 
for creating specialised repositories. Manually sorting a 
large number of images is a time-consuming process that 
requires significant time resources. Therefore, automatic 
identification of UML diagram types based on images is be-
coming particularly relevant, which leads to an increase in 
research attention to image classification methods.

Convert UML images to text formats
A significant group of studies concerns automating the rec-
ognition of individual elements and the semantics of dia-
grams and converting UML images to text formats for fur-
ther use in software tools. Saving UML diagrams in image 
format leads to loss of structural information, which makes 
them difficult to process and integrate into software tools. 
Since such images are static, they cannot be edited, which 
creates difficulties in maintaining and developing software 
projects. Therefore, there is a need for automated methods 
for recognising UML images and converting them to text 
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Figure 1. Areas of research in UML image recognition
Source: developed by the author
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formats to ensure that models are saved and editable. The 
following papers show that research in element recognition 
and UML diagram semantics focuses on two main areas.

Recognition of hand-created UML sketches – research 
aimed at transforming informal sketches into formal UML 
models, which allows their further use in development. 
This is important to maintain the flexibility of the design 
approach, reduce the manual work of transferring sketch-
es to CASE (Computer-Aided Software Engineering) tools, 
and speed up the modelling process.

Image recognition of UML diagrams created in CASE 
tools  – considers methods for automatically extracting 
structural information from UML images used in docu-
mentation. This allows converting UML models to editable 
formats, reducing information loss, and facilitating their 
further processing in software systems.

E.  Lank  et al.  (2000) proposed an interactive UML 
sketch recognition system that works with electronic tab-
lets, interactive whiteboards, and the mouse. It uses a mul-
ti-level approach to segmentation and recognition of UML 
graphic characters. First, general recognition of graphic 
primitives is performed, then UML characters, and at the 
final stage – their semantic location on the diagram. The 
researchers also integrated an error correction system that 
allows users to manually edit segmented elements to im-
prove recognition accuracy. A different approach was used 
by T. Hammond & R. Davis (2006), who created the Tahuti 
system. It uses geometric analysis techniques to automat-
ically convert UML class sketches to formal models. The 
main feature of this approach is its ability to adapt to dif-
ferent drawing styles, reducing the impact of the develop-
er’s handwriting on the quality of recognition. The system 
also considers the relative spatial distances between ele-
ments, which improves the accuracy of determining rela-
tionships between classes.

M. Axt (2023) proposed a method for automatic recog-
nition of UML thumbnails, based on the use of the OpenCV 
library for segmenting elements, analysing relationships 
between them, and converting diagrams to PlantUML for-
mat. A distinctive feature of this approach is the empha-
sis on geometric contour processing and the use of noise 
filtering algorithms to improve recognition accuracy. The 
method works well for well-structured sketches, but has 
limitations when recognising handwritten annotations, 
non-standard notation, and complex diagrams with a large 
number of interrelated elements, which requires additional 
manual adjustment of the results. T. De-Wyse et al. (2018) 
investigated the possibility of automatic recognition of 
UML sketches to extract useful information from them and 
then use them in the software modelling process. The main 
contribution of this paper is to investigate the relationship 
between initial sketches and final UML models. By analys-
ing sketches, the system identifies the key elements that 
are most important for developers, and offers their auto-
matic conversion to digital format.

A. Conrardy & J. Cabot (2024) explored the possibili-
ty of using large language models (LLMs) to automatically  

generate UML diagrams from images, with a particular 
focus on handwritten sketches. The paper conducted ex-
periments with various LLMs, including GPT-4V, Gemini 
Pro/Ultra, and CogVLM, to evaluate their ability to con-
vert UML-class images to the appropriate PlantUML text 
format. The study showed that GPT-4V performed better, 
while other models had difficulties with syntactic correct-
ness of the source code and correct interpretation of class 
relationships. Automatic recognition of LLM-based UML 
diagrams shows the potential to speed up the modelling 
process, but the results remain unstable, which requires 
mandatory user involvement to correct errors.

B.  Karasneh & M.R.V.  Chaudron  (2013) introduced  
Img2UML, a system for automatically extracting UML mod-
els from images and saving them in XML format, which al-
lows editing the resulting models in CASE tools. The basic 
idea is that UML models are often stored as images in doc-
umentation, which makes them impossible to edit and use 
in further development. Img2UML uses image processing 
techniques to detect UML classes, relationships between 
them, and recognise them. It uses a segmentation algo-
rithm to detect rectangles representing classes, and OCR 
(Optical Character Recognition) technologies to recognise 
text labels. The main limitations of this approach are relat-
ed to difficulties in recognising diagonal lines, dependency 
notation, and errors in OCR text recognition, especially in 
cases of poor image quality or non-standard placement of 
UML elements.

F. Chen et al. (2022) presented ReSECDI, a method for 
automatic recognition of UML class diagrams from imag-
es that uses rectangle clustering to identify classes and 
polyline pooling algorithms to correctly detect relation-
ships. This method is effective for high-quality images, but 
its accuracy is reduced on low-resolution and non-stand-
ard UML diagrams. A. Koenig et al. (2023) presented a NEU-
RAL-UML system based on deep learning for automatic 
recognition of structural elements of UML class diagrams 
from images. The main focus is on categorising and localis-
ing classes, and link types (association, inheritance, aggre-
gation, etc.), which significantly improves the automated 
processing of UML models. The system uses an extended 
set of annotated UML diagrams to train and validate the 
neural network, demonstrating high recognition accuracy. 
However, the researchers note that the method has certain 
limitations when working with diagrams containing unu-
sual or atypical graphic designations, and low-quality im-
ages, which may affect the accuracy of the analysis.

Specialised research areas
In addition to classifying and interpreting UML diagrams, 
there are also studies that focus on highly specialised tasks 
in the field of UML image recognition. These areas include 
identifying design patterns, which helps to automatically 
recognise standard architectural patterns, evaluating the lay-
out quality of chart elements to improve their readability, and 
analysing the complexity of the system, which allows evaluat-
ing the scale and structure of software based on UML models.
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Identifying design patterns is an important task for 
recognising standard architectural patterns in UML mod-
els. L.  Wang  et al.  (2022) proposed a pattern detection 
method that uses deep learning and advanced graphical in-
formation from UML diagrams. The researchers proposed 
a colour UML model in which information about classes, 
relationships, and other aspects is encoded using differ-
ent colours and geometric shapes. This allows turning the 
problem of recognising design patterns into an image clas-
sification problem that can be solved using convolutional 
neural networks.

Evaluating the layout quality of UML diagrams is an-
other area of research aimed at improving the readability 
of models. G.  Bergström  et al.  (2022) developed an auto-
matic method for evaluating the layout of UML classes us-
ing machine learning methods. To build the model, a sam-
ple of 600+ UML class diagrams was used, for which experts 
manually assessed the quality of the layout. The automated 
system analysed parameters such as the number of line in-
tersections, the length of links between classes, the uni-
formity of element placement, and other metrics that af-
fect the usability of the diagram.

Another area is the complexity analysis of UML models 
to assess the scalability and structure of software. S.W. Mu-
nialo  et al.  (2020) proposed an automated approach to 
measuring the size of service-oriented architectures (SOA) 
based on UML diagrams. Their method uses deep learning 
to automatically extract the characteristics of UML inter-
faces and sequential diagrams, including analysing rela-
tionships between components, classifying text labels, and 
determining the level of complexity of the software archi-
tecture. The implemented tool uses OCR algorithms for 
text recognition, classification algorithms for link analysis, 
and neural networks to assess system complexity.

Basic approaches to recognising UML diagrams in 
images include proprietary processing algorithms for  
converting images to XML, classical machine learning 
techniques, and deep learning techniques.

Custom processing and conversion algorithms
The UML image recognition method using its own pro-
cessing and transformation algorithms is mainly used 
to interpret and recognise the semantics of UML class 
diagrams for their subsequent conversion to structured 
XML format. This can be traced, for example, in the pa-
pers by B. Karasneh & M.R.V. Chaudron (2013), F. Chen et 
al. (2022), etc. However, it is also used at the preprocess-
ing stage to extract the characteristics used by classical 
machine learning algorithms for classification problems, 
which is confirmed by T. Ho-Quang et al. (2014) or J. Hjal-
tason & I. Samúelsson (2014).

Proprietary image processing algorithms are usually 
based on the use of classical computer vision techniques, 
such as image segmentation, contour detection, and ge-
ometric shape recognition. They allow directly detecting 
UML elements, such as classes, attributes and relationships 
between them, key shapes and contours (Fig. 2).

Figure 2. General algorithm of the UML class diagram 
recognition software

Source: developed by the author

The implementation details and algorithms used 
at each individual stage differ in different research pa-
pers. However, diagram  2 describes typical steps of the 
UML class diagram recognition algorithm, which can be 
considered as a generalised approach. At the first stage, 
the image is pre-processed to eliminate noise that may 
interfere with the accuracy of element recognition. The 
second stage focuses on identifying rectangles that repre-
sent classes. Each class can have one or more rectangles 
to indicate the name, attributes, and methods. To classi-
fy rectangles as components of a single class, clustering 
methods are used, where rectangles are distributed in a 
hierarchy: the class name is at the top, attributes are in 
the middle, and methods are at the bottom.

Once classes are detected, all rectangles are removed 
from the image to avoid interference when recognising 
link lines. The method of combining polygonal lines rec-
ognises different types of link lines: straight and diagonal. 
This helps to pinpoint the source and target class for each 
link. Character recognition is used to define link types, 
such as dependency, implementation, and aggregation. 
This includes identifying geometric shapes that represent 
the type of connection (for example, triangles for general-
isation or rhombuses for aggregation). At the final stage, 
text recognition is performed in all class rectangles. This 
process allows getting class names, attribute names, and 
method names. After text recognition, the information is 
combined with class rectangles to form a complete class 
with its characteristics.

During the analysis of papers that specialised in 
building their own recognition algorithms, data from the 
experimental results of these studies were extracted, and 
Table 2 was compiled. According to each paper, the table 
contains information about the accuracy of class recog-
nition, linking, and text processing. It is worth noting 
that the table contains only data from three studies, since 
other studies did not provide results confirming the effec-
tiveness of their algorithms.

Text recognition

Defining types of connections

Recognising communication lines

Recognising class rectangles

Pre-processing
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Notably, the study by M.  Axt  (2023) could have had 
lower accuracy indicators, since the problem was solved by 
recognising sketches of diagrams that are created in an in-
formal form (for example, by hand or on a blackboard). This 
approach had significant problems due to the uncertainty 
and non-standard styles of elements in such diagrams. In-
stead, B. Karasneh & M.R.V. Chaudron (2013) and F. Chen et 
al.  (2022) recognised diagrams created in specialised edi-
tors, which greatly facilitated the process and improved rec-
ognition accuracy due to a well-defined element structure.

In addition, B.  Karasneh & M.R.V.  Chaudron  (2013) 
provided accuracy metrics tested on only 10 sample charts 
created in a specific editor, which may limit the generalisa-
tion of the results. However, it is worth noting that among 
the methods considered, only the study by B. Karasneh & 
M.R.V. Chaudron (2013) contained data on the accuracy of 
text character recognition, which is an important aspect 
in preserving the semantics of UML diagrams. In contrast, 
the accuracy specified by F. Chen et al.  (2022) was tested 
on 598 sample diagrams found in various open source pro-
jects. This provides more grounds for generalising the re-
sults obtained and demonstrates the stability of the meth-
odology using real-world examples of UML diagrams. 

Classical machine learning methods
Classical machine learning methods are widely used to 
classify UML diagrams. A common feature of classical ma-
chine learning algorithms is that they are based on the use 
of predefined features to classify UML diagrams. Each of 
these methods relies on extracted graphical characteristics 
such as shapes, contours, element sizes, distances between 
them, and their spatial location, helping to clearly identi-
fy UML classes, relationships, and other components. This 
approach ensures good interpretability of the model, since 
the classification process can be tracked and explained 
based on the selected features.

In the research papers mentioned in Table 1 and spe-
cialising in classification using classical machine learning 

methods, a common pattern that the authors use when 
solving the problem of classifying UML diagrams can be 
distinguished. Figure 3 shows a general approach to UML 
classification experiments for class diagrams. The first step 
of the process is to get an input image of the UML class 
diagram. At the next stage, image processing is performed 
to identify contours and shapes, recognise horizontal and 
vertical lines, and identify rectangles and link lines, which 
is the basis for UML connections. To avoid delays in pro-
cessing complex images, images are pre-checked before 
basic processing. Next, special attributes or metrics are 
defined (for example, size, area, etc.). These attributes are 
calculated based on the objects identified in the previous 
step and presented as numeric values. Selected features are 
fed to the input of a machine learning algorithm, such as 
SVM (Support Vector Machine), which was trained based 
on these features to classify UML class diagrams.

Figure 3. Experimental classification process
Source: developed by the author

B. Karasneh & M.R.V. 
Chaudron (2013) F. Chen et al. (2022) M. Axt (2023)

Classes 100% 98.62% 92%
Connections 97% 93% 84%

Text and symbols 85% not specified not specified

Table 2. UML chart element recognition accuracy indicators

Source: developed by the author

The classical machine learning algorithms most com-
monly used for UML diagram classification problems are 
SVM, LR (Logistic Regression), RF (Random Forests), DT 
(Decision Tables), and J84 (a subspecies of Decision Tree). 
Some studies use RI (Rule Induction) and K-NN (K-Nearest 
Neighbours). Table 3 shows the machine learning methods 
whose accuracy data was taken from the relevant studies.

Classification 

Selection of features

Image processing

UML image

J48 LR DT RF SVM RI K-NN

T. Ho-Quang et al. (2014) 90% 91% 89% 93.1% 89%

J. Hjaltason & I. Samúelsson (2014) 88.65% 91.1% 89.4% 91.9% 91.5%

S. Rashid (2019) 90.8%

V. Moreno et al. (2020) 94.4%

M.H. Osman et al. (2018) 88.6% 88.9% 88.3% 90.7% 87.28% 89.1%

L. Wang et al. (2022) 91.9%

Table 3. UML diagram recognition accuracy in various studies

Source: developed by the author
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Comparative analysis of the classification accuracy of 
UML diagrams between different studies was not performed 
due to differences in experimental conditions, such as the 
set of classification features, image quality, chart type, and 
volume of training data. However, the Random Forests al-
gorithm stands out in three papers with accuracy results 
of 93.1%, 91.9%, and 90.74%, which indicates its high ef-
ficiency in classifying UML  diagrams. The highest results 
of classification accuracy among all the considered papers 
were achieved by V. Moreno et al. (2020), who showed that 
their Rule Induction method, with the correct set of rules, 
achieves an accuracy of 94.4%. This demonstrates the ad-
vantage of the Rule Induction method in the context of clas-
sifying UML diagrams, although its use may be specific to the 
conditions of this experiment. In general, all the considered 
algorithms provide a fairly high accuracy, reaching about 
90%, so under the appropriate conditions they can be suc-
cessfully used for classification problems of UML diagrams.

Deep learning methods and neural networks
With the development of new neural network architectures, 
such as CNN (Convolutional Neural Network), RNN (Recur-
rent Neural Network), Transformers, etc., there has been 
a noticeable interest among researchers in applying these 
methods to UML diagram recognition problems. Their ad-
vantage over classical machine learning algorithms is the 
ability to automatically extract relevant features from UML 
diagrams and adapt to different formats and styles. 

J. Ott et al. (2019) investigated the possibility of using 
low-shot learning to classify UML diagrams using CNN and 
the VGG (Visual Geometry Group) architecture as a basic 
comparison. However, the VGGNet method showed low 
accuracy in this paper (about 50%), which did not exceed 
random guessing due to the excessive number of parame-
ters and the complexity of training. Instead, using a small-
er CNN with four convolutional layers allowed achieving 
70% accuracy already with 100 training examples and 
almost 90% with several hundred. This highlights the ef-
fectiveness of low-shot learning in cases of limited data 
for training. B.  Gosala  et al.  (2021) applied CNN to auto-
matically classify UML-class diagrams, investigating the 
effectiveness of CNN using regularisation techniques to 
improve model accuracy. 

In classification problems, the use of deep learn-
ing helped to rapidly move from binary classification to 
multiclass classification, which expanded the ability to 
recognise various types of UML diagrams and elements 
in them. S.  Shcherban  et al.  (2021a) experimented with 
MobileNet, DenseNet (Densely Connected Convolutional 
Network), NasNet (Neural Architecture Search Network), 
ResNet (Resident Network), Inception, and its own archi-
tecture for the multiclass classification problem. In the 
paper S.  Shcherban  et al.  (2021a), the researchers indi-
cated the accuracy of algorithms when solving the prob-
lem of multiclass classification of UML diagrams. Among 
the tested models, DenseNet showed the highest accura-
cy – 94.44%, followed by MobileNet with 94.22%, while  

ResNet reached 93.50%. The NasNetMobile architec-
ture showed lower accuracy compared to other models – 
90.21%. This suggests that DenseNet and MobileNet are 
more efficient for this task, probably due to their ability 
to use parameters efficiently and store important infor-
mation during deep learning.

In general, the performance indicators of these neural 
network methods are quite high for UML diagram recog-
nition tasks. On average, they recognise UML in images in 
more than 90% of cases. However, the researchers demon-
strated that native neural network architectures designed 
specifically for a specific task provide even better results 
for recognising UML diagrams in images and can reach 
up to 95%. However, native architectures had significant-
ly fewer parameters (2.4  million) and demonstrated the 
fastest classification time (0.0135  s/image) (Shcherban  et 
al.,  2021a). Moreover, the researchers point out that the 
disadvantage of building own neural network architecture 
is its complexity. Developing a specialised architecture to 
perform a specific task, such as UML diagram recognition, 
requires considerable effort in designing and configuring 
the model, and a deep understanding of the task features 
and the data being processed.

By interpreting UML semantics, researchers can rec-
ognise individual diagram elements such as classes and 
types of relationships, which helps to automate software 
architecture analysis. However, there are currently no pa-
pers that solve the problem of completely converting UML 
images to XML format using deep learning, which indicates 
a potential area for future research. A. Koenig et al. (2023) 
developed a system for recognising structural elements in 
UML class diagrams using YOLOv8 (You Only Look Once) for 
semantic analysis of UML diagram images. YOLO provides 
high performance for the task of recognising individual UML 
elements of a class diagram, which averages 94.11%, and 
the accuracy of recognising class elements reaches 98.69%.

The ability of deep learning methods to generalise and 
automatically identify features for problem solving allows 
researchers to go beyond typical problems. Therefore, in 
addition to the problems of classifying and converting UML 
images to XML, they also explore such areas as, for exam-
ple, determining the complexity of the system architecture 
(Munialo et al., 2020). It is difficult to perform a compara-
tive analysis of all architectures together, because they are 
used in separate studies and often solve different problems. 
In addition, in each individual paper, the authors have their 
own set of training data, and separate experimental condi-
tions in which the tests were conducted. 

Advantages and limitations
of UML recognition methods

After considering each approach separately, it can be con-
cluded that each has its own advantages and limitations 
(Table 4). Deep neural networks have shown the best re-
sults in recognising different diagrams of different types 
and formats. However, they have significant computational 
costs and also require a sufficient amount of marked-up 
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data to train the model. Classical machine learning meth-
ods may be the best choice in situations where there are 
limited resources for training neural networks, but high-
er accuracy and interpretability of the model is required, 

since the layout works according to a clearly defined set of 
characteristics. Proprietary algorithms remain relevant for 
fast and easy processing of standard UML diagrams with-
out significant complexity in their structure.

Approach Advantages Disadvantages

Custom processing 
algorithms High processing speed, easy implementation Low adaptability to complex UML diagrams

Classical machine learning Good balance between performance and 
adaptability Requires manual selection of attributes

Deep learning High accuracy and ability to summarise new 
data

Requirements for computing resources, the need for a 
large amount of data

Table 4. Advantages and limitations of UML recognition approaches

Source: developed by the author

The analysis showed that deep neural networks are 
slightly superior to classical machine learning methods in 
the accuracy of recognising UML diagrams in the classifi-
cation problem, achieving 94-95% accuracy in the case of 
DenseNet, MobileNet, ResNet, while the best classical algo-
rithms (Random Forest, Rule Induction, SVM) show results 
in the range of 91-94%. However, classical methods have 
the advantage of processing speed and explanatory solu-
tions, while deep neural networks provide better general-
isation capabilities and recognise more complex UML dia-
grams with variable representation styles. Thus, the choice 
of UML classification approach depends on the trade-off 
between accuracy, processing speed, and available comput-
ing resources, but the general trend indicates the advan-
tage of deep learning in automatic UML recognition tasks.

It was found that for the tasks of recognising individ-
ual elements and semantics of UML diagrams in images, 
among the various approaches to automatic recognition 
of UML diagrams, only NEURAL-UML uses deep neural 
networks, while other studies are based on convention-
al image processing methods and computer vision algo-
rithms (Koenig  et al.,  2023). The resulting accuracy for 
recognising various elements using NEURAL-UML varies 
between 92.62-96.09%, while Table  2 shows the recog-
nition rates of native algorithms, the accuracy of which 
varies in the range of 93-98.62% in the study by F. Chen et 
al. (2022). Although ReSECDI and similar classical meth-
ods may show slightly higher accuracy rates for individual  

elements, NEURAL-UML has a number of important ad-
vantages. Firstly, the neural network approach is more 
resistant to the diversity of UML diagram styles, in par-
ticular, to changes in fonts, element positions, and circuit 
structural features. Secondly, NEURAL-UML works better 
with UML diagrams that contain low-quality artefacts, 
such as distortion, blurring, or poor contrast, which is a 
common problem in UML images stored in bitmap format. 
Thirdly, the method demonstrates a higher generalisation 
ability, which allows it to work effectively with UML dia-
grams created in various software environments without 
the need for significant refinement. Thus, while conven-
tional algorithms can show high accuracy under certain 
controlled conditions, it is deep neural networks that 
provide greater reliability, scalability, and adaptability for 
automatic UML diagram recognition.

Challenges and trends for further research 
Current research on recognising UML diagrams from imag-
es faces a number of technical challenges that become ob-
stacles to achieving full automation and accuracy. Despite 
this, the development of new approaches and methods 
allows gradually expanding the possibilities of analysing 
and automating work with UML. Among the analysed pa-
pers (Table 1), several problems of UML diagram recogni-
tion can be distinguished, which are most often solved by 
the researchers. Figure 4 shows those that were mentioned 
more than once.

Figure 4. The most frequently mentioned problems with UML diagram recognition
Source: compiled by the author
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In different UML software projects, diagrams may dif-
fer not only in content, but also in styles, fonts, colours, 
and element placement. This makes automatic recogni-
tion difficult, as the systems used for classification are of-
ten trained in standard styles. For example, diagrams can 
have different types of arrows to indicate dependencies 
or associations, or they can be created in different tools, 
which adds variability that is not provided for in train-
ing models. Effective recognition requires additional al-
gorithms that can adapt to different styles or standardise 
the diagrams themselves.

The quality of UML diagram images significantly affects 
the performance of recognition algorithms. Low resolution, 
blurry borders, background noise, or other artefacts can 
cause important details to be lost. In the case of blurry or 
low-quality images, the model may not correctly recognise 
text names, roles, or relationships between elements. This 
causes the need for image preprocessing, such as improving 
contrast, eliminating noise, or even image reconstruction.

One of the most serious limitations is limited access 
to large data sets containing various UML diagrams. The 
small amount of training images limits the ability of mod-
els to generalise, which increases the likelihood of errors 
when working with new or unusual UML diagrams. There is 
also often a problem of uneven distribution between UML 
chart types (for example, more class diagrams, less sequen-
tial ones), which can affect the accuracy of classification.

Real UML diagrams often contain additional elements 
that may not be important for recognising a particular type 
or pattern, such as comments, markers, or other graphic 
labels. Such elements can “clog” the image, complicating 
model analysis and reducing classification accuracy. Algo-
rithms often require first removing or ignoring such ele-
ments, which, however, requires additional resources.

Overfitting occurs when the model performs well on 
the training set, but shows low accuracy on new data. This 
is especially problematic with a limited data set, because 
the model can “learn” the specifics of specific diagrams, 
but cannot generalise knowledge to new images. Regulari-
sation techniques are often used to solve the problem, and 
data augmentation strategies, but this requires additional 
computational resources.

Modern research on UML diagram recognition shows 
a clear evolution of methods and approaches covering the 
period from classical image processing algorithms to deep 
learning and the use of large language models. Early ap-
proaches were based on geometric techniques and optical 
character recognition (OCR) algorithms that made allowed 
extracting UML elements from scanned or digital images 
(Lank et al., 2000). In the following years, the researchers 
integrated machine learning techniques to classify UML 
diagrams based on features extracted from graphical ob-
jects. Since 2014, there has been an active development of 
methods for automatic classification of UML diagrams us-
ing machine learning technologies, in particular SVM and 
Random Forest (Hjaltason & Samúelsson, 2014). In 2018, 
the first papers appeared using deep neural networks to 

recognise UML diagrams, including convolutional neural 
networks (CNN) to extract semantic structures (Osman et 
al., 2018). Recent trends in UML diagram research are re-
lated to the integration of large language models (LLM), 
which allow automatic conversion of UML thumbnails into 
formal models (Conrardy & Cabot, 2024). 

In addition, there is an active introduction of low-shot 
learning methods, which allows training models on lim-
ited data sets, as an attempt to reduce the need for large 
marked-up datasets (Otts et al., 2019). The low-shot learn-
ing method has become an effective approach for teaching 
UML diagram recognition models based on limited samples 
of training data. The researchers proved that even with 100 
training examples, 70% accuracy can be achieved, and with 
several hundred – almost 90%. The study showed that a 
compact CNN with four convolutional layers showed sig-
nificantly better performance in small samples than the 
large VGGNet model, which highlights the importance of 
adapting the architecture to the specifics of the task.

An important area is also the combination of conven-
tional machine learning and deep learning methods, which 
helps to improve the accuracy of recognising UML ele-
ments in complex diagrams (Koenig et al., 2023). The use 
of CNN allowed researchers to automatically extract key 
graphical features of UML elements, such as class forms 
and relationships between them, while SVM was used for 
final classification and verification of the obtained charac-
teristics, in particular, recognition of text elements (class 
names, attributes, and methods).

Most classification studies focused on only one type 
of UML diagram, but noted the need to improve methods 
for recognising other types. In such studies, classical ma-
chine learning algorithms were most often used, in par-
ticular, SVM (Rashid,  2019), Random Forest (Osman  et 
al.,  2018), logistic regression (Ho-Quang  et al.,  2014). 
However, the use of deep neural networks, such as dif-
ferent CNN architectures, allowed achieving a general-
ised approach that covers the classification of various 
UML diagrams within a single model by automatically 
extracting characteristics, which reduced the need for 
manual feature design. Thus, studies of UML diagram 
classification are gradually shifting the focus from highly 
specialised approaches based on classical algorithms to 
generalised solutions based on deep learning. The devel-
opment of UML diagram recognition goes through sever-
al stages-from basic geometric algorithms to modern hy-
brid methods that combine deep neural networks, large 
language models, and adaptive approaches to limited 
samples. Further research is likely to focus on improving 
the accuracy, adaptability, and efficiency of UML diagram 
recognition in real-world software environments.

Conclusions
The study confirmed the relevance and effectiveness of var-
ious methods of automatic recognition of UML diagrams, 
especially for tasks of classifying, extracting elements, 
and converting UML images to text format. An analysis of 
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23 publications showed that 53% of studies are devoted to 
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In UML diagram classification problems, neural net-
works show the highest accuracy – up to 95%, while clas-
sical machine learning methods, such as SVM, reach 94%. 
Studies show that the Random Forest method is one of 
the most effective for classifying UML diagrams, reaching 
93.1%, 91.9%, and 90.74% in various experiments.

In problems of extracting individual elements of UML 
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the high accuracy of conventional algorithms under con-
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matically recognising UML diagrams. The main problems 
in this area remain the poor quality of input images, the 
limited number of annotated data sets, and the significant 
variability of UML chart formats. There is also a problem 
integrating recognised UML diagrams into CASE tools, as 
many of them do not support editing UML images without 
first converting them to text format.

Among the promising areas of further research are low-
shot learning methods, the use of large language models) for 
UML diagram recognition, and combined approaches that 
combine classical machine learning algorithms with deep 
neural networks. Most often, researchers point out the need 
to create large-scale open repositories of UML diagrams for 
training models, improve algorithms for converting sketch-
es into formal UML diagrams, and develop new methods for 
automatic semantic interpretation of UML models. Addition-
ally, based on the results obtained, appropriate areas for fur-
ther research are the development of self-learning methods 
to improve the accuracy of recognising UML diagrams with-
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reduce the computational complexity of algorithms for real 
use in resource-dependent environments, and the develop-
ment of methods for automatic detection of anomalies in 
UML diagrams to identify potential errors in models.
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Анотація. Мета дослідження полягала в аналізі та узагальненні сучасних методів розпізнавання UML-діаграм 
на зображеннях. Основна увага була приділена автоматизованому вилученню текстових і графічних елементів з 
метою подальшого відтворення моделей у текстових форматах. Методика дослідження охоплювала аналіз наукових 
публікацій, що включав 23 роботи, доступних у відкритих джерелах. Дослідження зосереджувалося на вивченні 
існуючих підходів до розпізнавання UML-діаграм на зображеннях. Аналіз наукових публікацій показав, які 
сучасні методи розпізнавання UML-діаграм дозволяють досягти точності понад 90 % у розпізнаванні UML-діаграм  
у зображеннях. Досліджено переваги, обмеження та ефективність класичних алгоритмів комп’ютерного зору, 
машинного навчання та глибоких нейронних мереж. Встановлено, що найкращі результати у класифікації 
забезпечують глибокі нейронні мережі, тоді як класичні алгоритми залишаються ефективними для інтерпретації 
та вилучення елементів UML-діаграм. З’ясовано, що основними напрямками у сфери розпізнавання UML-діаграм 
є класифікація типів UML-діаграм, а також інтерпретація та перетворення UML-зображень у текстові формати. 
Виявлено основні виклики: низьку якість зображень, обмеженість навчальних даних і варіативність форматів. 
Наведено можливі напрямки робіт для подальших досліджень, такі як створення великих анотованих наборів  
UML-діаграм для підвищення точності, узагальнення сучасних підходів для підтримки розпізнавання більшої 
кількості типів діаграм. Результати роботи сприятимуть вдосконаленню процесів автоматизації роботи з  
UML-діаграмами, а також забезпечать розуміння сучасного стану галузі інформаційних технологій та розробки 
програмного забезпечення, відкриваючи нові перспективи для розвитку
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