
Automatic recognition of UML diagrams
in images: Approaches, trends, and challenges

Volodymyr Polischuk*

Postgraduate Student
Kyiv National University of Technologies and Design
01011, 2 Mala Shyianovska Str., Kyiv, Ukraine
https://orcid.org/0009-0000-2161-4560

*Corresponding author

Copyright © The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/)

Received: 08.10.2024
Revised: 15.01.2025
Accepted: 26.02.2025

UDC 004.021 Doi: 10.30857/2786-5371.2025.1.2

Journal homepage: https://technologies-engineering.com.ua/en
Vol. 26, No. 1, 2025

TECHNOLOGIES AND ENGINEERING

Suggested Citation:
Polischuk, V. (2025). Automatic recognition of UML diagrams in images: Approaches, trends, and challenges. Technologies and Engineering,
26(1), 23-35. doi: 10.30857/2786-5371.2025.1.2.

Abstract. The purpose of the study was to analyse and generalise modern methods for recognising UML diagrams in
images. The main focus was on automated extraction of text and graphic elements to further reproduce models in text
formats. The research methodology covered the analysis of scientific publications, which included 23 papers available
in open sources. The study focused on exploring existing approaches to recognising UML diagrams in images. Analysis
of scientific publications has shown what modern methods of UML diagram recognition allow achieving more than 90%
accuracy in recognising UML diagrams in images. The advantages, limitations, and effectiveness of classical algorithms
for computer vision, machine learning, and deep neural networks were investigated. It was found that the best results
in classification were provided by deep neural networks, while classical algorithms remain effective for interpreting and
extracting elements of UML diagrams. It was found that the main areas in the field of UML diagram recognition are
classification of UML diagram types, and interpretation and conversion of UML images to text formats. The main problems
were identified: poor image quality, limited training data, and format variability. Possible areas of further research
are presented, such as creating large annotated sets of UML diagrams to improve accuracy, and summarising modern
approaches to support recognition of more chart types. The findings will contribute to improving the automation processes
for working with UML diagrams, and provide an understanding of the current state of the information technology and
software development industry, opening up new prospects for development

Keywords: image recognition; computer vision; machine learning; deep learning; automation

Introduction
UML (Unified Modelling Language) diagrams provide a
standardised, structured representation of system archi-
tecture, which significantly improves communication be-
tween development participants, in particular, program-
mers, system architects, and analysts. However, with the
growing number and complexity of software projects, the
need for automating the processing of UML diagrams be-
came more acute, especially in terms of recognising infor-
mation directly from graphic images, which further allows
integrating the obtained data into development processes,
search information systems, etc.

In the modern world of information technology and soft-
ware development, UML diagrams play an important role in
the process of system design, visualisation, and documenta-
tion of software systems. According to a survey in this area,
UML diagrams are the most common standard diagrams

for design modelling and reach 67% (Chen et al., 2022).
Research shows that most UML diagrams are stored

and distributed as images. In particular, based on the re-
sults of a large-scale study by R. Hebig et al. (2016), con-
ducted on the basis of models stored in various formats on
GitHub, 93,596 UML models from 24,717 different reposi-
tories were automatically processed and partially manually
analysed. Of this number, 57,822 models (61.8%) were pre-
sented in image format, while the rest were presented in
.xml or .uml formats.

More recent studies by F. Chen et al. (2022) showed that
73.72% of UML diagrams collected from projects on GitHub
were stored as bitmaps (PNG, JPG, BMP, GIF, etc.), while the
remaining 26.28% were stored in text format. Therefore,
since UML models are often stored as images embedded in
documents, the original versions of the model’s text format

https://technologies-engineering.com.ua/en

Technologies and Engineering, Vol. 26, No. 1, 202524

Automatic recognition of UML diagrams in images...

are easily lost. This makes it difficult to use and evolve such
models, as it becomes impossible to quickly edit, integrate,
and update them in new environments. The researchers
proposed ReSECDI, a method designed to automatically
recognise semantic elements (such as classes, relation-
ships) in UML class diagram images. Their approach uses
classical image processing technologies, including cluster-
ing rectangles and combining lines. Problems such as dif-
ferent chart resolutions and styles are solved, depending
on the tools in which these charts were created. Despite
achieving an accuracy rate of about 90%, the study focus-
es mainly on UML class diagrams and does not cover other
types of UML diagrams or broader methodological issues.

S. Shcherban et al. (2021a) developed a neural net-
work-based approach for classifying four types of UML
diagrams, including class, activity, sequence, and use case
diagrams. Their study used convolutional neural networks
(CNNs) and achieved a high accuracy of more than 90% in
classifying various types of diagrams. However, it was lim-
ited to the task of classification and did not consider the
extraction of structural or semantic elements. A. Conrardy
& J. Cabot (2024) investigated the use of large language
models to transform UML class diagrams into formal ma-
chine-readable representations such as PlantUML. Al-
though their approach was innovative, it focused only on
converting handwritten diagrams and highlighted the lim-
itations of the LLM (Large Language Model), such as the
dependence on quality hints.

M. Axt (2023) introduced SketchToPlantUML, a tool
for converting sketchy UML class diagrams to formal Plan-
tUML models using OpenCV. The tool focuses on preproc-
essing and segmenting static images, but has difficulties
with more complex relationships such as associations and
dependencies. V. Moreno et al. (2020) developed a machine
learning tool for classifying static UML diagrams from
web images. Their approach achieves 95% accuracy by us-
ing rule induction, but does not consider textual content,
which limits its capabilities for semantic analysis.

A. Koenig et al. (2023) developed NEURAL-UML, a
training framework for identifying and classifying semantic
elements in UML class diagrams. The study presented a new

annotated data set for training and evaluated the model on
complex diagrams, achieving accuracy rates of more than
90%. Statistics highlighted the importance of research in
this area and pointed out the need for efficient methods
that can automatically process, classify, and extract con-
tent from UML diagrams stored in various graphic formats.
M. Baraban et al. (2021) investigated the features of using
intelligent technologies for the problem of image recog-
nition. This is especially relevant in the context of rapid
growth in data volumes and the number of UML diagrams
that require fast and accurate analysis.

These studies focus on specific aspects of UML dia-
gram recognition, such as classification of chart types,
identification of semantic elements, or transformation
of thumbnails into formal models. However, as of the
beginning of 2025, there was no comprehensive review
of existing approaches or comprehensive analysis of key
challenges of UML diagram recognition, so the purpose
of the study was to systematise available sources and
implement a generalised analysis of UML diagram recog-
nition methods to provide a holistic vision of problems,
challenges, and trends.

The objectives of this study included:
♦ To analyse classical image processing methods used

to recognise UML diagrams.
♦ To overview current approaches using machine

learning and deep learning for UML diagram recognition.
♦ To identify current trends and major challenges faced

by researchers and practitioners in the industry.

Materials and Methods
The main method of research was the analysis of 23 scien-
tific publications that were publicly available. It included
searching for relevant sources in scientific databases such
as IEEE Xplore, Springer, Scopus, Web of Science, and open
archives such as arXiv. For the selection of materials, cri-
teria such as relevance of the topic (recognition of UML di-
agrams, in particular, classification, extraction of semantic
elements, image processing), and the availability of exper-
imental data or descriptions of the methods were used. Ta-
ble 1 contains a list of papers that were considered.

Research paper Subject area

E. Lank et al. (2000)

Extraction of elements and recognition of UML
semantics in images

B. Karasneh & M.R.V Chaudron (2013)

T. De-Wyse et al. (2018)

F. Chen et al. (2022)

M. Axt (2023)

A. Koenig et al. (2023)

A. Conrardy & J. Cabot (2024)

T. Hammond & R. Davis (2006)

Table 1. Research papers that have been considered and their subject areas

Technologies and Engineering, Vol. 26, No. 1, 2025 25

Polischuk

The study stages included several consecutive steps.
First, relevant papers were searched and collected in the
above-mentioned databases. Further, the collected papers
were grouped by area, which allowed structuring the analy-
sis. The next step was to extract key information from each
paper, such as the tasks set by the authors (classification of
UML diagrams, recognition of semantics, etc.), and the ap-
proaches to solving these problems themselves, including
data on the accuracy of methods, their speed, and the amount
of data used. The collected information was organised into
tables and charts for further evaluation. The final stage was
the generalisation of the obtained data to systematise ex-
isting approaches and formulate conclusions at each stage.

The classification method was used to systematise the
collected data. The publications were grouped into catego-
ries: problems solved by researchers, solution methods (in
particular, native algorithms, classical machine learning
methods, deep learning), and types of UML diagrams that
were studied. Challenges for recognising UML diagrams
were detected during the analysis of papers. Each paper
was analysed to identify key approaches, algorithms used,
and their effectiveness. In addition, the statistical analysis
method was applied. Quantitative data on the accuracy of
classification of UML diagrams, the amount of data used
for training models, and the percentage of correctly rec-
ognised semantic elements were collected. The collected
information was structured in the form of tables and dia-
grams for further analysis.

Key indicators for evaluating methods were recog-
nition accuracy, quantity, and quality of data for training
and testing, algorithm execution time (if specified by the
authors), and universality, i.e., the ability to apply meth-
ods to different types of UML diagrams, rather than just a
specific type. The methods were evaluated in three sepa-
rate groups: classical machine learning algorithms, deep
learning methods, and proprietary algorithms. In addition,
aspects such as noise resistance, variable chart styles, and

adaptability to different working conditions were consid-
ered. The chosen methodology ensured reproducibility of
the study, since all stages of data collection and analysis are
described, and all sources used have links for verification.

Results and Discussion
As part of the study, modern approaches to UML diagram
recognition were classified, including classical computer
vision algorithms, machine learning methods, and neural
networks. Special attention was paid to analysing the ef-
fectiveness of methods, their limitations, and prospects.
The main trends in the use of deep neural networks and
large language models for automating UML diagram pro-
cessing were presented.

Classification of UML diagrams by subject areas
In the field of UML diagram recognition in images, re-
searchers have focused on solving a number of problems
related to automatic processing, classification, and inter-
pretation of graphic information. Given the growing need
for tools that can effectively work with UML models stored
as images, various research initiatives are focused on creat-
ing solutions to automate these processes. The main areas
of research were classification of chart types, interpretation
and recognition of UML structural elements, and conversion
of images to formats suitable for use in design software.

Among the scientific publications available in open
sources, 23 papers were identified that dealt with the task
of recognising UML diagrams in images. Figure 1 shows the
main research areas in the field of UML diagram recogni-
tion and processing – classification and conversion of UML
images to XML (Extensible Markup Language). The rest of
the papers were difficult to group and assign to a separate
area, because they are focused on solving and researching
specific problems, such as analysing the complexity of the
system architecture or finding the model’s compliance
with standardised rules for plotting diagrams, etc.

Research paper Subject area

V. Moreno et al. (2020)

Classification of UML diagrams

B. Gosala et al. (2021)
S. Shcherban et al. (2021a)
S. Shcherban et al. (2021b)
L. Wang et al. (2022)
J. Hjaltason & I. Samúelsson (2014)
T. Ho-Quang et al. (2014)
M.H. Osman et al. (2018)
S. Rashid (2019)
G. Bergström et al. (2022)

Other

J. Ott et al. (2019)
S.W. Munialo et al. (2020)
R. Hebig et al. (2016)
M. Baraban et al. (2021)
A. Jha (2019)

Table 1. Continued

Source: compiled by the author

Technologies and Engineering, Vol. 26, No. 1, 202526

Automatic recognition of UML diagrams in images...

Classification of UML diagrams consists of determin-
ing whether an image belongs to UML diagrams, and divid-
ing diagrams into types such as classes, sequences, states,
etc. This process automates image analysis using charac-
teristics inherent in UML diagrams, including shapes, text
elements, semantic attributes, and other properties. In
general, the classification of UML images can be divided
into two types (Jha et al., 2019), in particular:

♦ Binary classification – a classification that gives a
“yes” or “no” answer to a given question. It is used when
it is necessary to determine whether an object belongs to
a certain category. For example, in the case of UML dia-
grams, binary classification can determine whether a giv-
en image is a UML diagram.

♦ Multiclass classification – a classification that allows
dividing objects into several different categories. In the
context of UML diagrams, multiclass classification can help
to automatically recognise which of the many UML types a
model image belongs to (for example, a class diagram, se-
quence diagram, state diagram, etc.).

Various approaches to automatic classification of UML
diagrams are presented in the scientific literature. T. Ho-
Quang et al. (2014) investigated the possibility of auto-
matic classification of UML class diagrams using image
analysis and machine learning methods. The paper offers
a set of 23 features describing the structure of diagrams,
and experiments with various classification algorithms
are performed. The researchers focus on identifying the
most informative features for recognising UML classes,
and on the need to create databases of UML diagrams,
which is the basis for academic research. S. Rashid (2019)
proposed extending methods for automatic classification
of UML diagrams by adding recognition of UML sequenc-
es. The main focus is on the development of sequence
analysis algorithms based on machine learning meth-
ods. This study is a continuation of previous research in
the field of automatic recognition of UML diagrams and
demonstrates the potential for extending classification to
other types of UML models.

V. Moreno et al. (2020) investigated the possibility of au-
tomatic classification of UML diagrams among web images
using machine learning techniques. The main contribution
of the study is the creation of a large sample of UML images,
which helped to train the model to effectively separate UML
diagrams from irrelevant graphic diagrams. The proposed
method is aimed at improving the accuracy of search en-
gines and automating the analysis of software repositories.

B. Gosala et al. (2021) presented an approach to au-
tomatic classification of UML class diagrams using deep
learning using convolutional neural networks (CNN). The
researchers considered the advantages of CNNs over clas-
sical machine learning methods and evaluated the impact
of various hyperparameters on the quality of recognition.
The proposed method provides high automation of the
UML image analysis process, but its effectiveness may de-
pend on the size and quality of the training sample. The
researchers also pointed out the limited availability of UML
diagram repositories and the importance of creating open
and high-quality repositories. J. Ott et al. (2019) reviewed
the use of low-shot learning for classifying UML diagrams,
which allows efficient training of models on small data
samples. The researchers showed that even with a limited
number of training examples, it is possible to achieve high
accuracy in classifying UML classes and sequences. The
study demonstrated the possibilities of optimising educa-
tional processes in UML image recognition.

S. Shcherban et al. (2021b) presented an approach to
multiclass classification of UML diagrams, which includes
recognition of class diagrams, sequences, activities, use
cases, and other types of UML. Deep learning was used,
namely, popular neural architectures with transfer learn-
ing. The study made a significant contribution to expand-
ing the capabilities of automatic analysis of UML diagrams,
which contributes to the creation of scalable systems for
processing software models. Since images are one of the
most common formats for storing and sharing UML dia-
grams, determining whether they belong to UML notation
and classifying them by type is an important condition
for creating specialised repositories. Manually sorting a
large number of images is a time-consuming process that
requires significant time resources. Therefore, automatic
identification of UML diagram types based on images is be-
coming particularly relevant, which leads to an increase in
research attention to image classification methods.

Convert UML images to text formats
A significant group of studies concerns automating the rec-
ognition of individual elements and the semantics of dia-
grams and converting UML images to text formats for fur-
ther use in software tools. Saving UML diagrams in image
format leads to loss of structural information, which makes
them difficult to process and integrate into software tools.
Since such images are static, they cannot be edited, which
creates difficulties in maintaining and developing software
projects. Therefore, there is a need for automated methods
for recognising UML images and converting them to text

U
M

L
im

ag
e

Classification

Conversion to XML

Multi-class

Binary

Hand-drawn diagram

Diagram created in
the editor

Other

Determining system
complexity

Recognising patterns

Checking compliance
with standards

Figure 1. Areas of research in UML image recognition
Source: developed by the author

Technologies and Engineering, Vol. 26, No. 1, 2025 27

Polischuk

formats to ensure that models are saved and editable. The
following papers show that research in element recognition
and UML diagram semantics focuses on two main areas.

Recognition of hand-created UML sketches – research
aimed at transforming informal sketches into formal UML
models, which allows their further use in development.
This is important to maintain the flexibility of the design
approach, reduce the manual work of transferring sketch-
es to CASE (Computer-Aided Software Engineering) tools,
and speed up the modelling process.

Image recognition of UML diagrams created in CASE
tools – considers methods for automatically extracting
structural information from UML images used in docu-
mentation. This allows converting UML models to editable
formats, reducing information loss, and facilitating their
further processing in software systems.

E. Lank et al. (2000) proposed an interactive UML
sketch recognition system that works with electronic tab-
lets, interactive whiteboards, and the mouse. It uses a mul-
ti-level approach to segmentation and recognition of UML
graphic characters. First, general recognition of graphic
primitives is performed, then UML characters, and at the
final stage – their semantic location on the diagram. The
researchers also integrated an error correction system that
allows users to manually edit segmented elements to im-
prove recognition accuracy. A different approach was used
by T. Hammond & R. Davis (2006), who created the Tahuti
system. It uses geometric analysis techniques to automat-
ically convert UML class sketches to formal models. The
main feature of this approach is its ability to adapt to dif-
ferent drawing styles, reducing the impact of the develop-
er’s handwriting on the quality of recognition. The system
also considers the relative spatial distances between ele-
ments, which improves the accuracy of determining rela-
tionships between classes.

M. Axt (2023) proposed a method for automatic recog-
nition of UML thumbnails, based on the use of the OpenCV
library for segmenting elements, analysing relationships
between them, and converting diagrams to PlantUML for-
mat. A distinctive feature of this approach is the empha-
sis on geometric contour processing and the use of noise
filtering algorithms to improve recognition accuracy. The
method works well for well-structured sketches, but has
limitations when recognising handwritten annotations,
non-standard notation, and complex diagrams with a large
number of interrelated elements, which requires additional
manual adjustment of the results. T. De-Wyse et al. (2018)
investigated the possibility of automatic recognition of
UML sketches to extract useful information from them and
then use them in the software modelling process. The main
contribution of this paper is to investigate the relationship
between initial sketches and final UML models. By analys-
ing sketches, the system identifies the key elements that
are most important for developers, and offers their auto-
matic conversion to digital format.

A. Conrardy & J. Cabot (2024) explored the possibili-
ty of using large language models (LLMs) to automatically

generate UML diagrams from images, with a particular
focus on handwritten sketches. The paper conducted ex-
periments with various LLMs, including GPT-4V, Gemini
Pro/Ultra, and CogVLM, to evaluate their ability to con-
vert UML-class images to the appropriate PlantUML text
format. The study showed that GPT-4V performed better,
while other models had difficulties with syntactic correct-
ness of the source code and correct interpretation of class
relationships. Automatic recognition of LLM-based UML
diagrams shows the potential to speed up the modelling
process, but the results remain unstable, which requires
mandatory user involvement to correct errors.

B. Karasneh & M.R.V. Chaudron (2013) introduced
Img2UML, a system for automatically extracting UML mod-
els from images and saving them in XML format, which al-
lows editing the resulting models in CASE tools. The basic
idea is that UML models are often stored as images in doc-
umentation, which makes them impossible to edit and use
in further development. Img2UML uses image processing
techniques to detect UML classes, relationships between
them, and recognise them. It uses a segmentation algo-
rithm to detect rectangles representing classes, and OCR
(Optical Character Recognition) technologies to recognise
text labels. The main limitations of this approach are relat-
ed to difficulties in recognising diagonal lines, dependency
notation, and errors in OCR text recognition, especially in
cases of poor image quality or non-standard placement of
UML elements.

F. Chen et al. (2022) presented ReSECDI, a method for
automatic recognition of UML class diagrams from imag-
es that uses rectangle clustering to identify classes and
polyline pooling algorithms to correctly detect relation-
ships. This method is effective for high-quality images, but
its accuracy is reduced on low-resolution and non-stand-
ard UML diagrams. A. Koenig et al. (2023) presented a NEU-
RAL-UML system based on deep learning for automatic
recognition of structural elements of UML class diagrams
from images. The main focus is on categorising and localis-
ing classes, and link types (association, inheritance, aggre-
gation, etc.), which significantly improves the automated
processing of UML models. The system uses an extended
set of annotated UML diagrams to train and validate the
neural network, demonstrating high recognition accuracy.
However, the researchers note that the method has certain
limitations when working with diagrams containing unu-
sual or atypical graphic designations, and low-quality im-
ages, which may affect the accuracy of the analysis.

Specialised research areas
In addition to classifying and interpreting UML diagrams,
there are also studies that focus on highly specialised tasks
in the field of UML image recognition. These areas include
identifying design patterns, which helps to automatically
recognise standard architectural patterns, evaluating the lay-
out quality of chart elements to improve their readability, and
analysing the complexity of the system, which allows evaluat-
ing the scale and structure of software based on UML models.

Technologies and Engineering, Vol. 26, No. 1, 202528

Automatic recognition of UML diagrams in images...

Identifying design patterns is an important task for
recognising standard architectural patterns in UML mod-
els. L. Wang et al. (2022) proposed a pattern detection
method that uses deep learning and advanced graphical in-
formation from UML diagrams. The researchers proposed
a colour UML model in which information about classes,
relationships, and other aspects is encoded using differ-
ent colours and geometric shapes. This allows turning the
problem of recognising design patterns into an image clas-
sification problem that can be solved using convolutional
neural networks.

Evaluating the layout quality of UML diagrams is an-
other area of research aimed at improving the readability
of models. G. Bergström et al. (2022) developed an auto-
matic method for evaluating the layout of UML classes us-
ing machine learning methods. To build the model, a sam-
ple of 600+ UML class diagrams was used, for which experts
manually assessed the quality of the layout. The automated
system analysed parameters such as the number of line in-
tersections, the length of links between classes, the uni-
formity of element placement, and other metrics that af-
fect the usability of the diagram.

Another area is the complexity analysis of UML models
to assess the scalability and structure of software. S.W. Mu-
nialo et al. (2020) proposed an automated approach to
measuring the size of service-oriented architectures (SOA)
based on UML diagrams. Their method uses deep learning
to automatically extract the characteristics of UML inter-
faces and sequential diagrams, including analysing rela-
tionships between components, classifying text labels, and
determining the level of complexity of the software archi-
tecture. The implemented tool uses OCR algorithms for
text recognition, classification algorithms for link analysis,
and neural networks to assess system complexity.

Basic approaches to recognising UML diagrams in
images include proprietary processing algorithms for
converting images to XML, classical machine learning
techniques, and deep learning techniques.

Custom processing and conversion algorithms
The UML image recognition method using its own pro-
cessing and transformation algorithms is mainly used
to interpret and recognise the semantics of UML class
diagrams for their subsequent conversion to structured
XML format. This can be traced, for example, in the pa-
pers by B. Karasneh & M.R.V. Chaudron (2013), F. Chen et
al. (2022), etc. However, it is also used at the preprocess-
ing stage to extract the characteristics used by classical
machine learning algorithms for classification problems,
which is confirmed by T. Ho-Quang et al. (2014) or J. Hjal-
tason & I. Samúelsson (2014).

Proprietary image processing algorithms are usually
based on the use of classical computer vision techniques,
such as image segmentation, contour detection, and ge-
ometric shape recognition. They allow directly detecting
UML elements, such as classes, attributes and relationships
between them, key shapes and contours (Fig. 2).

Figure 2. General algorithm of the UML class diagram
recognition software

Source: developed by the author

The implementation details and algorithms used
at each individual stage differ in different research pa-
pers. However, diagram 2 describes typical steps of the
UML class diagram recognition algorithm, which can be
considered as a generalised approach. At the first stage,
the image is pre-processed to eliminate noise that may
interfere with the accuracy of element recognition. The
second stage focuses on identifying rectangles that repre-
sent classes. Each class can have one or more rectangles
to indicate the name, attributes, and methods. To classi-
fy rectangles as components of a single class, clustering
methods are used, where rectangles are distributed in a
hierarchy: the class name is at the top, attributes are in
the middle, and methods are at the bottom.

Once classes are detected, all rectangles are removed
from the image to avoid interference when recognising
link lines. The method of combining polygonal lines rec-
ognises different types of link lines: straight and diagonal.
This helps to pinpoint the source and target class for each
link. Character recognition is used to define link types,
such as dependency, implementation, and aggregation.
This includes identifying geometric shapes that represent
the type of connection (for example, triangles for general-
isation or rhombuses for aggregation). At the final stage,
text recognition is performed in all class rectangles. This
process allows getting class names, attribute names, and
method names. After text recognition, the information is
combined with class rectangles to form a complete class
with its characteristics.

During the analysis of papers that specialised in
building their own recognition algorithms, data from the
experimental results of these studies were extracted, and
Table 2 was compiled. According to each paper, the table
contains information about the accuracy of class recog-
nition, linking, and text processing. It is worth noting
that the table contains only data from three studies, since
other studies did not provide results confirming the effec-
tiveness of their algorithms.

Text recognition

Defining types of connections

Recognising communication lines

Recognising class rectangles

Pre-processing

Technologies and Engineering, Vol. 26, No. 1, 2025 29

Polischuk

Notably, the study by M. Axt (2023) could have had
lower accuracy indicators, since the problem was solved by
recognising sketches of diagrams that are created in an in-
formal form (for example, by hand or on a blackboard). This
approach had significant problems due to the uncertainty
and non-standard styles of elements in such diagrams. In-
stead, B. Karasneh & M.R.V. Chaudron (2013) and F. Chen et
al. (2022) recognised diagrams created in specialised edi-
tors, which greatly facilitated the process and improved rec-
ognition accuracy due to a well-defined element structure.

In addition, B. Karasneh & M.R.V. Chaudron (2013)
provided accuracy metrics tested on only 10 sample charts
created in a specific editor, which may limit the generalisa-
tion of the results. However, it is worth noting that among
the methods considered, only the study by B. Karasneh &
M.R.V. Chaudron (2013) contained data on the accuracy of
text character recognition, which is an important aspect
in preserving the semantics of UML diagrams. In contrast,
the accuracy specified by F. Chen et al. (2022) was tested
on 598 sample diagrams found in various open source pro-
jects. This provides more grounds for generalising the re-
sults obtained and demonstrates the stability of the meth-
odology using real-world examples of UML diagrams.

Classical machine learning methods
Classical machine learning methods are widely used to
classify UML diagrams. A common feature of classical ma-
chine learning algorithms is that they are based on the use
of predefined features to classify UML diagrams. Each of
these methods relies on extracted graphical characteristics
such as shapes, contours, element sizes, distances between
them, and their spatial location, helping to clearly identi-
fy UML classes, relationships, and other components. This
approach ensures good interpretability of the model, since
the classification process can be tracked and explained
based on the selected features.

In the research papers mentioned in Table 1 and spe-
cialising in classification using classical machine learning

methods, a common pattern that the authors use when
solving the problem of classifying UML diagrams can be
distinguished. Figure 3 shows a general approach to UML
classification experiments for class diagrams. The first step
of the process is to get an input image of the UML class
diagram. At the next stage, image processing is performed
to identify contours and shapes, recognise horizontal and
vertical lines, and identify rectangles and link lines, which
is the basis for UML connections. To avoid delays in pro-
cessing complex images, images are pre-checked before
basic processing. Next, special attributes or metrics are
defined (for example, size, area, etc.). These attributes are
calculated based on the objects identified in the previous
step and presented as numeric values. Selected features are
fed to the input of a machine learning algorithm, such as
SVM (Support Vector Machine), which was trained based
on these features to classify UML class diagrams.

Figure 3. Experimental classification process
Source: developed by the author

B. Karasneh & M.R.V.
Chaudron (2013) F. Chen et al. (2022) M. Axt (2023)

Classes 100% 98.62% 92%
Connections 97% 93% 84%

Text and symbols 85% not specified not specified

Table 2. UML chart element recognition accuracy indicators

Source: developed by the author

The classical machine learning algorithms most com-
monly used for UML diagram classification problems are
SVM, LR (Logistic Regression), RF (Random Forests), DT
(Decision Tables), and J84 (a subspecies of Decision Tree).
Some studies use RI (Rule Induction) and K-NN (K-Nearest
Neighbours). Table 3 shows the machine learning methods
whose accuracy data was taken from the relevant studies.

Classification

Selection of features

Image processing

UML image

J48 LR DT RF SVM RI K-NN

T. Ho-Quang et al. (2014) 90% 91% 89% 93.1% 89%

J. Hjaltason & I. Samúelsson (2014) 88.65% 91.1% 89.4% 91.9% 91.5%

S. Rashid (2019) 90.8%

V. Moreno et al. (2020) 94.4%

M.H. Osman et al. (2018) 88.6% 88.9% 88.3% 90.7% 87.28% 89.1%

L. Wang et al. (2022) 91.9%

Table 3. UML diagram recognition accuracy in various studies

Source: developed by the author

Technologies and Engineering, Vol. 26, No. 1, 202530

Automatic recognition of UML diagrams in images...

Comparative analysis of the classification accuracy of
UML diagrams between different studies was not performed
due to differences in experimental conditions, such as the
set of classification features, image quality, chart type, and
volume of training data. However, the Random Forests al-
gorithm stands out in three papers with accuracy results
of 93.1%, 91.9%, and 90.74%, which indicates its high ef-
ficiency in classifying UML diagrams. The highest results
of classification accuracy among all the considered papers
were achieved by V. Moreno et al. (2020), who showed that
their Rule Induction method, with the correct set of rules,
achieves an accuracy of 94.4%. This demonstrates the ad-
vantage of the Rule Induction method in the context of clas-
sifying UML diagrams, although its use may be specific to the
conditions of this experiment. In general, all the considered
algorithms provide a fairly high accuracy, reaching about
90%, so under the appropriate conditions they can be suc-
cessfully used for classification problems of UML diagrams.

Deep learning methods and neural networks
With the development of new neural network architectures,
such as CNN (Convolutional Neural Network), RNN (Recur-
rent Neural Network), Transformers, etc., there has been
a noticeable interest among researchers in applying these
methods to UML diagram recognition problems. Their ad-
vantage over classical machine learning algorithms is the
ability to automatically extract relevant features from UML
diagrams and adapt to different formats and styles.

J. Ott et al. (2019) investigated the possibility of using
low-shot learning to classify UML diagrams using CNN and
the VGG (Visual Geometry Group) architecture as a basic
comparison. However, the VGGNet method showed low
accuracy in this paper (about 50%), which did not exceed
random guessing due to the excessive number of parame-
ters and the complexity of training. Instead, using a small-
er CNN with four convolutional layers allowed achieving
70% accuracy already with 100 training examples and
almost 90% with several hundred. This highlights the ef-
fectiveness of low-shot learning in cases of limited data
for training. B. Gosala et al. (2021) applied CNN to auto-
matically classify UML-class diagrams, investigating the
effectiveness of CNN using regularisation techniques to
improve model accuracy.

In classification problems, the use of deep learn-
ing helped to rapidly move from binary classification to
multiclass classification, which expanded the ability to
recognise various types of UML diagrams and elements
in them. S. Shcherban et al. (2021a) experimented with
MobileNet, DenseNet (Densely Connected Convolutional
Network), NasNet (Neural Architecture Search Network),
ResNet (Resident Network), Inception, and its own archi-
tecture for the multiclass classification problem. In the
paper S. Shcherban et al. (2021a), the researchers indi-
cated the accuracy of algorithms when solving the prob-
lem of multiclass classification of UML diagrams. Among
the tested models, DenseNet showed the highest accura-
cy – 94.44%, followed by MobileNet with 94.22%, while

ResNet reached 93.50%. The NasNetMobile architec-
ture showed lower accuracy compared to other models –
90.21%. This suggests that DenseNet and MobileNet are
more efficient for this task, probably due to their ability
to use parameters efficiently and store important infor-
mation during deep learning.

In general, the performance indicators of these neural
network methods are quite high for UML diagram recog-
nition tasks. On average, they recognise UML in images in
more than 90% of cases. However, the researchers demon-
strated that native neural network architectures designed
specifically for a specific task provide even better results
for recognising UML diagrams in images and can reach
up to 95%. However, native architectures had significant-
ly fewer parameters (2.4 million) and demonstrated the
fastest classification time (0.0135 s/image) (Shcherban et
al., 2021a). Moreover, the researchers point out that the
disadvantage of building own neural network architecture
is its complexity. Developing a specialised architecture to
perform a specific task, such as UML diagram recognition,
requires considerable effort in designing and configuring
the model, and a deep understanding of the task features
and the data being processed.

By interpreting UML semantics, researchers can rec-
ognise individual diagram elements such as classes and
types of relationships, which helps to automate software
architecture analysis. However, there are currently no pa-
pers that solve the problem of completely converting UML
images to XML format using deep learning, which indicates
a potential area for future research. A. Koenig et al. (2023)
developed a system for recognising structural elements in
UML class diagrams using YOLOv8 (You Only Look Once) for
semantic analysis of UML diagram images. YOLO provides
high performance for the task of recognising individual UML
elements of a class diagram, which averages 94.11%, and
the accuracy of recognising class elements reaches 98.69%.

The ability of deep learning methods to generalise and
automatically identify features for problem solving allows
researchers to go beyond typical problems. Therefore, in
addition to the problems of classifying and converting UML
images to XML, they also explore such areas as, for exam-
ple, determining the complexity of the system architecture
(Munialo et al., 2020). It is difficult to perform a compara-
tive analysis of all architectures together, because they are
used in separate studies and often solve different problems.
In addition, in each individual paper, the authors have their
own set of training data, and separate experimental condi-
tions in which the tests were conducted.

Advantages and limitations
of UML recognition methods

After considering each approach separately, it can be con-
cluded that each has its own advantages and limitations
(Table 4). Deep neural networks have shown the best re-
sults in recognising different diagrams of different types
and formats. However, they have significant computational
costs and also require a sufficient amount of marked-up

Technologies and Engineering, Vol. 26, No. 1, 2025 31

Polischuk

data to train the model. Classical machine learning meth-
ods may be the best choice in situations where there are
limited resources for training neural networks, but high-
er accuracy and interpretability of the model is required,

since the layout works according to a clearly defined set of
characteristics. Proprietary algorithms remain relevant for
fast and easy processing of standard UML diagrams with-
out significant complexity in their structure.

Approach Advantages Disadvantages

Custom processing
algorithms High processing speed, easy implementation Low adaptability to complex UML diagrams

Classical machine learning Good balance between performance and
adaptability Requires manual selection of attributes

Deep learning High accuracy and ability to summarise new
data

Requirements for computing resources, the need for a
large amount of data

Table 4. Advantages and limitations of UML recognition approaches

Source: developed by the author

The analysis showed that deep neural networks are
slightly superior to classical machine learning methods in
the accuracy of recognising UML diagrams in the classifi-
cation problem, achieving 94-95% accuracy in the case of
DenseNet, MobileNet, ResNet, while the best classical algo-
rithms (Random Forest, Rule Induction, SVM) show results
in the range of 91-94%. However, classical methods have
the advantage of processing speed and explanatory solu-
tions, while deep neural networks provide better general-
isation capabilities and recognise more complex UML dia-
grams with variable representation styles. Thus, the choice
of UML classification approach depends on the trade-off
between accuracy, processing speed, and available comput-
ing resources, but the general trend indicates the advan-
tage of deep learning in automatic UML recognition tasks.

It was found that for the tasks of recognising individ-
ual elements and semantics of UML diagrams in images,
among the various approaches to automatic recognition
of UML diagrams, only NEURAL-UML uses deep neural
networks, while other studies are based on convention-
al image processing methods and computer vision algo-
rithms (Koenig et al., 2023). The resulting accuracy for
recognising various elements using NEURAL-UML varies
between 92.62-96.09%, while Table 2 shows the recog-
nition rates of native algorithms, the accuracy of which
varies in the range of 93-98.62% in the study by F. Chen et
al. (2022). Although ReSECDI and similar classical meth-
ods may show slightly higher accuracy rates for individual

elements, NEURAL-UML has a number of important ad-
vantages. Firstly, the neural network approach is more
resistant to the diversity of UML diagram styles, in par-
ticular, to changes in fonts, element positions, and circuit
structural features. Secondly, NEURAL-UML works better
with UML diagrams that contain low-quality artefacts,
such as distortion, blurring, or poor contrast, which is a
common problem in UML images stored in bitmap format.
Thirdly, the method demonstrates a higher generalisation
ability, which allows it to work effectively with UML dia-
grams created in various software environments without
the need for significant refinement. Thus, while conven-
tional algorithms can show high accuracy under certain
controlled conditions, it is deep neural networks that
provide greater reliability, scalability, and adaptability for
automatic UML diagram recognition.

Challenges and trends for further research
Current research on recognising UML diagrams from imag-
es faces a number of technical challenges that become ob-
stacles to achieving full automation and accuracy. Despite
this, the development of new approaches and methods
allows gradually expanding the possibilities of analysing
and automating work with UML. Among the analysed pa-
pers (Table 1), several problems of UML diagram recogni-
tion can be distinguished, which are most often solved by
the researchers. Figure 4 shows those that were mentioned
more than once.

Figure 4. The most frequently mentioned problems with UML diagram recognition
Source: compiled by the author

4 4

8

3 3

9
8
7
6
5
4
3
2
1
0

Variety of UML
diagram formats

and styles

Low image
quality

Limited training
data set

Effect
of redundant

elements

Retraining

Technologies and Engineering, Vol. 26, No. 1, 202532

Automatic recognition of UML diagrams in images...

In different UML software projects, diagrams may dif-
fer not only in content, but also in styles, fonts, colours,
and element placement. This makes automatic recogni-
tion difficult, as the systems used for classification are of-
ten trained in standard styles. For example, diagrams can
have different types of arrows to indicate dependencies
or associations, or they can be created in different tools,
which adds variability that is not provided for in train-
ing models. Effective recognition requires additional al-
gorithms that can adapt to different styles or standardise
the diagrams themselves.

The quality of UML diagram images significantly affects
the performance of recognition algorithms. Low resolution,
blurry borders, background noise, or other artefacts can
cause important details to be lost. In the case of blurry or
low-quality images, the model may not correctly recognise
text names, roles, or relationships between elements. This
causes the need for image preprocessing, such as improving
contrast, eliminating noise, or even image reconstruction.

One of the most serious limitations is limited access
to large data sets containing various UML diagrams. The
small amount of training images limits the ability of mod-
els to generalise, which increases the likelihood of errors
when working with new or unusual UML diagrams. There is
also often a problem of uneven distribution between UML
chart types (for example, more class diagrams, less sequen-
tial ones), which can affect the accuracy of classification.

Real UML diagrams often contain additional elements
that may not be important for recognising a particular type
or pattern, such as comments, markers, or other graphic
labels. Such elements can “clog” the image, complicating
model analysis and reducing classification accuracy. Algo-
rithms often require first removing or ignoring such ele-
ments, which, however, requires additional resources.

Overfitting occurs when the model performs well on
the training set, but shows low accuracy on new data. This
is especially problematic with a limited data set, because
the model can “learn” the specifics of specific diagrams,
but cannot generalise knowledge to new images. Regulari-
sation techniques are often used to solve the problem, and
data augmentation strategies, but this requires additional
computational resources.

Modern research on UML diagram recognition shows
a clear evolution of methods and approaches covering the
period from classical image processing algorithms to deep
learning and the use of large language models. Early ap-
proaches were based on geometric techniques and optical
character recognition (OCR) algorithms that made allowed
extracting UML elements from scanned or digital images
(Lank et al., 2000). In the following years, the researchers
integrated machine learning techniques to classify UML
diagrams based on features extracted from graphical ob-
jects. Since 2014, there has been an active development of
methods for automatic classification of UML diagrams us-
ing machine learning technologies, in particular SVM and
Random Forest (Hjaltason & Samúelsson, 2014). In 2018,
the first papers appeared using deep neural networks to

recognise UML diagrams, including convolutional neural
networks (CNN) to extract semantic structures (Osman et
al., 2018). Recent trends in UML diagram research are re-
lated to the integration of large language models (LLM),
which allow automatic conversion of UML thumbnails into
formal models (Conrardy & Cabot, 2024).

In addition, there is an active introduction of low-shot
learning methods, which allows training models on lim-
ited data sets, as an attempt to reduce the need for large
marked-up datasets (Otts et al., 2019). The low-shot learn-
ing method has become an effective approach for teaching
UML diagram recognition models based on limited samples
of training data. The researchers proved that even with 100
training examples, 70% accuracy can be achieved, and with
several hundred – almost 90%. The study showed that a
compact CNN with four convolutional layers showed sig-
nificantly better performance in small samples than the
large VGGNet model, which highlights the importance of
adapting the architecture to the specifics of the task.

An important area is also the combination of conven-
tional machine learning and deep learning methods, which
helps to improve the accuracy of recognising UML ele-
ments in complex diagrams (Koenig et al., 2023). The use
of CNN allowed researchers to automatically extract key
graphical features of UML elements, such as class forms
and relationships between them, while SVM was used for
final classification and verification of the obtained charac-
teristics, in particular, recognition of text elements (class
names, attributes, and methods).

Most classification studies focused on only one type
of UML diagram, but noted the need to improve methods
for recognising other types. In such studies, classical ma-
chine learning algorithms were most often used, in par-
ticular, SVM (Rashid, 2019), Random Forest (Osman et
al., 2018), logistic regression (Ho-Quang et al., 2014).
However, the use of deep neural networks, such as dif-
ferent CNN architectures, allowed achieving a general-
ised approach that covers the classification of various
UML diagrams within a single model by automatically
extracting characteristics, which reduced the need for
manual feature design. Thus, studies of UML diagram
classification are gradually shifting the focus from highly
specialised approaches based on classical algorithms to
generalised solutions based on deep learning. The devel-
opment of UML diagram recognition goes through sever-
al stages-from basic geometric algorithms to modern hy-
brid methods that combine deep neural networks, large
language models, and adaptive approaches to limited
samples. Further research is likely to focus on improving
the accuracy, adaptability, and efficiency of UML diagram
recognition in real-world software environments.

Conclusions
The study confirmed the relevance and effectiveness of var-
ious methods of automatic recognition of UML diagrams,
especially for tasks of classifying, extracting elements,
and converting UML images to text format. An analysis of

Technologies and Engineering, Vol. 26, No. 1, 2025 33

Polischuk

References
[1] Axt, M. (2023). Transformation of sketchy UML class diagrams into formal PlantUML models. Retrieved from https://

www.diva-portal.org/smash/record.jsf?pid=diva2:1786365&dswid=-4498.
[2] Baraban, M., Baraban, S., & Garmash, V. (2021). Development of an advanced web application with a convolutional neural

network for image recognition. Information Technologies and Computer Engineering, 18(1), 7-14. doi: 10.31649/1999-
9941-2021-50-1-7-14.

[3] Bergström, G., Hujainah, F., Ho-Quang, T., Jolak, R., Rukmono, S.A., Nurwidyantoro, A., & Chaudron, M.R.V. (2022).
Evaluating the layout quality of UML class diagrams using machine learning. The Journal of Systems & Software, 192,
article number 111413. doi: 10.1016/j.jss.2022.111413.

[4] Chen, F., Zhang, L., Lian, X., & Niu, N. (2022). Automatically recognizing the semantic elements from UML class
diagram images. Journal of Systems and Software, 193, article number 111431. doi 10.1016/j.jss.2022.111431.

[5] Conrardy, A., & Cabot, J. (2024). From image to UML: First results of image-based UML diagram generation using LLMs.
doi: 10.48550/arXiv.2404.11376.

[6] De-Wyse, T., Renaux, E., & Mennesson, J. (2018). Using sketch recognition for capturing developer’s mental models.
In Proceedings of the ACM/IEEE 21st international conference on model driven engineering languages and systems
(pp. 23-28). Copenhagen: IEEE.

[7] Gosala, B., Chowdhuri, S.R., Singh, J., Gupta, M., & Mishra, A. (2021). Automatic classification of UML class
diagrams using deep learning technique: Convolutional neural network. Applied Sciences, 11(9), article number 4267.
doi: 10.3390/app11094267.

[8] Hebig, R., Ho-Quang, T., Robles, G., Fernandez, M.A., & Chaudron, M.R.V. (2016). The quest for open source projects
that use UML: Mining GitHub. In Proceedings of the ACM/IEEE 19th international conference on model driven engineering
languages and systems (pp. 173-183). New York: Association for Computing Machinery. doi: 10.1145/2976767.2976778.

[9] Hjaltason, J., & Samúelsson, I. (2014). Automatic classification of UML class diagrams through image feature extraction
and machine learning. Sweden: University of Gothenburg and Chalmers University of Technology.

[10] Ho-Quang, T., Chaudron, M.R.V., Karasneh, B., & Osman, M. (2014). Automatic classification of UML class diagrams
from images. In Proceedings of the 21st Asia-Pacific software engineering conference (pp. 422-429). Jeju: IEEE.
doi: 10.1109/APSEC.2014.65.

[11] Jha, A., Dave, M., & Madan, S. (2019). Comparison of binary class and multi-class classifier using different data mining
classification techniques. In Proceedings of international conference on advancements in computing & management
(ICACM) 2019. (pp. 894-903). Rochester: SSRN. doi: 10.2139/ssrn.3464211.

[12] Karasneh, B., & Chaudron, M.R.V. (2013). Extracting UML models from images. In Proceedings of the 2013 5th
international conference on computer science and information technology (pp. 134-137). Amman: IEEE. doi: 10.1109/
CSIT.2013.6588776.

23 publications showed that 53% of studies are devoted to
classifying UML diagrams, 33% to extracting elements and
converting them to text format, and 14% to other areas.

In UML diagram classification problems, neural net-
works show the highest accuracy – up to 95%, while clas-
sical machine learning methods, such as SVM, reach 94%.
Studies show that the Random Forest method is one of
the most effective for classifying UML diagrams, reaching
93.1%, 91.9%, and 90.74% in various experiments.

In problems of extracting individual elements of UML
diagrams, proprietary computer vision algorithms show
accuracy in the range of 93-98.62%, while deep neural net-
works show accuracy in the range of 92.62-96.09%. Despite
the high accuracy of conventional algorithms under con-
trolled conditions, it is deep neural networks that provide
greater reliability, scalability, and adaptability when auto-
matically recognising UML diagrams. The main problems
in this area remain the poor quality of input images, the
limited number of annotated data sets, and the significant
variability of UML chart formats. There is also a problem
integrating recognised UML diagrams into CASE tools, as
many of them do not support editing UML images without
first converting them to text format.

Among the promising areas of further research are low-
shot learning methods, the use of large language models) for
UML diagram recognition, and combined approaches that
combine classical machine learning algorithms with deep
neural networks. Most often, researchers point out the need
to create large-scale open repositories of UML diagrams for
training models, improve algorithms for converting sketch-
es into formal UML diagrams, and develop new methods for
automatic semantic interpretation of UML models. Addition-
ally, based on the results obtained, appropriate areas for fur-
ther research are the development of self-learning methods
to improve the accuracy of recognising UML diagrams with-
out the need for a large amount of annotated data, ways to
reduce the computational complexity of algorithms for real
use in resource-dependent environments, and the develop-
ment of methods for automatic detection of anomalies in
UML diagrams to identify potential errors in models.

Acknowledgements
None.

Conflict of Interest
None.

https://www.diva-portal.org/smash/record.jsf?pid=diva2:1786365&dswid=-4498
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1786365&dswid=-4498
https://doi.org/10.31649/1999-9941-2021-50-1-7-14
https://doi.org/10.31649/1999-9941-2021-50-1-7-14
https://doi.org/10.1016/j.jss.2022.111413%20
https://doi.org/10.1016/j.jss.2022.111431
https://doi.org/10.48550/arXiv.2404.11376
https://ceur-ws.org/Vol-2245/hufamo_paper_4.pdf
https://doi.org/10.3390/app11094267
https://doi.org/10.1145/2976767.2976778%20
https://gupea.ub.gu.se/handle/2077/38587
https://gupea.ub.gu.se/handle/2077/38587
https://doi.org/10.1109/APSEC.2014.65
https://doi.org/10.2139/ssrn.3464211
https://doi.org/10.1109/CSIT.2013.6588776
https://doi.org/10.1109/CSIT.2013.6588776

Technologies and Engineering, Vol. 26, No. 1, 202534

Automatic recognition of UML diagrams in images...

[13] Koenig, A., Allaert, B., & Renaux, E. (2023). NEURAL-UML: Intelligent recognition system of structural elements
in UML class diagram. In Proceedings of the 5th workshop on artificial intelligence and model-driven engineering.
(pp. 605-613). Västerås: IEEE. doi: 10.1109/MODELS-C59198.2023.00099.

[14] Lank, E., Thorley, J.S., & Chen, S.J. (2000). An interactive system for recognizing hand drawn UML diagrams.
In Proceedings of the IBM center for advanced studies conference (CASCON) (pp. 1-15). DBLP: Mississauga:
doi: 10.1145/782034.782041.

[15] Moreno, V., Génova, G., Alejandres, M., & Fraga, A. (2020). Automatic classification of web images as UML static
diagrams using machine learning techniques. Applied Sciences, 10(7), article number 2406. doi: 0.3390/app10072406.

[16] Munialo, S.W., Muketha, G.M., & Omieno, K.K. (2020). Automated feature extraction from UML images to measure SOA
size. International Journal of Recent Technology and Engineering, 9(2), 1132-1136. doi: 10.35940/ijrte.B4131.079220.

[17] Osman, M.H., Ho-Quang, T., & Chaudron, M.R.V. (2018). An automated approach for classifying reverse-engineered
and forward-engineered UML class diagrams. In Proceedings of the 44th EUROMICRO conference on software engineering
and advanced applications (pp. 123-130). Prague: IEEE. doi: 10.1109/SEAA.2018.00070.

[18] Ott, J., Atchison, A., & Linstead, E. (2019). Exploring the applicability of low-shot learning in mining software
repositories. Journal of Big Data, 6, article number 35. doi: 10.1186/s40537-019-0198-z.

[19] Rashid, S. (2019). Automatic classification of UML sequence diagrams from images. Sweden: University of Gothenburg
and Chalmers University of Technology.

[20] Shcherban, S., Liang, P., Li, Z., & Yang, C. (2021a). Multiclass classification of four types of UML diagrams from
images using deep learning. In Proceedings of the 33rd international conference on software engineering and knowledge
engineering. Pittsburgh: SEKE. doi: 10.18293/SEKE2021-185.

[21] Shcherban, S., Liang, P., Li, Z., & Yang, C. (2021b). Multiclass classification of UML diagrams from images using deep
learning. International Journal of Software Engineering, 31(11), 1683-1698. doi: 10.1142/S0218194021400179.

[22] Wang, L., Song, T., Song, H.-N., & Zhang, S. (2022). Research on design pattern detection method based on UML model
with extended image information and deep learning. Applied Sciences, 12(17), article number 8718. doi: 10.3390/
app12178718.

[23] Hammond, T., & Davis, R. (2006). Tahuti: A geometrical sketch recognition system for UML class diagrams.
In Proceedings of the 2006 working conference on Advanced visual interfaces (pp. 372-375). New York: ACM.
doi: 10.1145/1185657.1185786.

https://doi.org/10.1109/MODELS-C59198.2023.00099
https://www.researchgate.net/publication/221500853_An_interactive_system_for_recognizing_hand_drawn_UML_diagrams
https://doi.org/10.3390/app10072406
https://doi.org/10.35940/ijrte.B4131.079220
https://doi.org/10.1109/SEAA.2018.00070
https://doi.org/10.1186/s40537-019-0198-z
https://gupea.ub.gu.se/handle/2077/62433?locale-attribute=sv
https://doi.org/10.18293/SEKE2021-185
https://doi.org/10.1142/S0218194021400179
https://doi.org/10.3390/app12178718
https://doi.org/10.3390/app12178718
https://doi.org/10.1145/1185657.1185786

Technologies and Engineering, Vol. 26, No. 1, 2025 35

Polischuk

Автоматизоване розпізнавання UML діаграм
на зображеннях: підходи, тенденції та виклики

Володимир Поліщук
Аспірант
Київський національний університет технологій та дизайну
01011, вул. Мала Шияновська, 2, м. Київ, Україна
https://orcid.org/0009-0000-2161-4560

Анотація. Мета дослідження полягала в аналізі та узагальненні сучасних методів розпізнавання UML-діаграм
на зображеннях. Основна увага була приділена автоматизованому вилученню текстових і графічних елементів з
метою подальшого відтворення моделей у текстових форматах. Методика дослідження охоплювала аналіз наукових
публікацій, що включав 23 роботи, доступних у відкритих джерелах. Дослідження зосереджувалося на вивченні
існуючих підходів до розпізнавання UML-діаграм на зображеннях. Аналіз наукових публікацій показав, які
сучасні методи розпізнавання UML-діаграм дозволяють досягти точності понад 90 % у розпізнаванні UML-діаграм
у зображеннях. Досліджено переваги, обмеження та ефективність класичних алгоритмів комп’ютерного зору,
машинного навчання та глибоких нейронних мереж. Встановлено, що найкращі результати у класифікації
забезпечують глибокі нейронні мережі, тоді як класичні алгоритми залишаються ефективними для інтерпретації
та вилучення елементів UML-діаграм. З’ясовано, що основними напрямками у сфери розпізнавання UML-діаграм
є класифікація типів UML-діаграм, а також інтерпретація та перетворення UML-зображень у текстові формати.
Виявлено основні виклики: низьку якість зображень, обмеженість навчальних даних і варіативність форматів.
Наведено можливі напрямки робіт для подальших досліджень, такі як створення великих анотованих наборів
UML-діаграм для підвищення точності, узагальнення сучасних підходів для підтримки розпізнавання більшої
кількості типів діаграм. Результати роботи сприятимуть вдосконаленню процесів автоматизації роботи з
UML-діаграмами, а також забезпечать розуміння сучасного стану галузі інформаційних технологій та розробки
програмного забезпечення, відкриваючи нові перспективи для розвитку

Ключові слова: розпізнавання зображень; комп’ютерний зір; машинне навчання; глибоке навчання;
автоматизація

https://orcid.org/0009-0000-2161-4560

