
Optimising productivity and automating software
development: Innovative memory system approaches
in large language models
Olena Sokol*

Master of Science
Taras Shevchenko National University of Kyiv
01601, 60 Volodymyrska Str., Kyiv, Ukraine
https://orcid.org/0009-0005-5160-460X

*Corresponding author

Copyright © The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/)

Received: 29.08.2024
Revised: 20.01.2025
Accepted: 26.02.2025

UDC 004.021 Doi: 10.30857/2786-5371.2025.1.3

Journal homepage: https://technologies-engineering.com.ua/en
Vol. 26, No. 1, 2025

TECHNOLOGIES AND ENGINEERING

Suggested Citation:
Sokol, O. (2025). Optimising productivity and automating software development: Innovative memory system approaches in large
language models. Technologies and Engineering, 26(1), 36-44. doi: 10.30857/2786-5371.2025.1.3.

Abstract. This study explored innovative approaches to enhancing memory systems in large language models to
improve efficiency and automate software development. The primary focus was on optimising memory systems that enable
long-term context storage and facilitate model adaptation to evolving interaction conditions. The research analysed
contemporary methods of data storage and processing that enhance the ability of models to handle large volumes of
information efficiently. This included the utilisation of specialised algorithms and memory mechanisms that improve the
accuracy and adaptability of large language models in executing complex tasks. A secondary focus of the study examined
the capabilities of large language models in automating software development. It assessed how these models can generate
code, optimise it, and perform error detection. Particular attention was given to analysing the impact of automation
on software quality and development time. In this context, the study investigated the use of large language models for
automating repetitive tasks, generating tests, and implementing best programming practices. The findings indicated that
enhancing the memory systems of large language models significantly improves their efficiency in tasks requiring long-
term interaction. Integrating such models into software development processes has been shown to reduce both time and
resource expenditures while enhancing product quality. The practical significance of this study lies in the formulation of
recommendations for the optimal utilisation of large language models in the field of information technology

Keywords: contextual processing; algorithm optimisation; code generation; intelligent agents; big data processing;
automation; interaction modelling

Introduction
The modern development of artificial intelligence (AI) is
opening up new opportunities across various domains,
including software development. Large language models
(LLMs) occupy a central role in this process due to their
ability to analyse, generate, and adapt to changing condi-
tions. A crucial factor influencing the performance of these
models is the memory system. Through memory optimi-
sation, LLMs can interact effectively with users, preserve
context, and adapt to new data. This study aims to explore
innovative approaches to the utilisation of memory sys-
tems in LLMs, as well as to analyse the potential for auto-
mating software development using these models.

One of the key challenges in the operation of large
language models is the preservation of long-term context

when processing vast amounts of data. Traditional ap-
proaches to information processing often face limitations
in speed and accuracy, which impact the adaptability of
these models. W. Zhong et al. (2024) proposed the Memo-
ryBank system, which enhances the long-term memory of
language models by enabling more efficient context storage
and retrieval. This significantly improved the accuracy and
stability of models when handling lengthy texts. Innova-
tive methods such as hierarchical memory structures, dy-
namic context windows, and compression algorithms have
facilitated more efficient data storage. Q. Wu et al. (2020)
introduced Memformer, an extended memory transformer
that allows models to manage complex dependencies while
optimising memory usage.

https://orcid.org/0009-0005-5160-460X
https://technologies-engineering.com.ua/en

Technologies and Engineering, Vol. 26, No. 1, 2025 37

Sokol

Another important aspect is the integration of mem-
ory with big data storage and processing. The use of dis-
tributed memory systems, cloud computing, and special-
ised hardware solutions can significantly enhance model
performance. For example, W. Kwon et al. (2023) proposed
PagedAttention, a method for efficient memory man-
agement, which reduced latency and increased the speed
of real-time data processing. S. Sagi (2024) explored
optimisation techniques for graphics processing units
(GPUs) aimed at improving the performance of LLMs,
enabling the modelling of more complex problems while
reducing computational costs. Innovations in memory
technology also create new opportunities for the devel-
opment of intelligent agents. With improved memory
systems, such agents can not only analyse data in real
time but also make informed decisions based on accu-
mulated experience.

The automation of software development is another
promising application of large language models. By lever-
aging automation capabilities such as code generation, op-
timisation, and verification, developers gain powerful tools
to reduce development time and enhance software qual-
ity. M. Schäfer et al. (2023) investigated the use of LLMs
for automated testing, demonstrating how these models
generate test scripts and verify component compatibility.
Beyond code generation, LLMs are also capable of opti-
mising code. For instance, B. Liu et al. (2024) examined the
potential of automatic software refactoring using LLMs,
highlighting their contribution to improving development
efficiency and quality. Moreover, ensuring high-quality
software solutions throughout their lifecycle is essential
for enhancing the efficiency of LLMs. As A. Shantyr (2024)
states, the use of combined quality models not only facili-
tates the assessment of software system efficiency but also
ensures compliance with established criteria throughout
the entire development process.

LLMs are capable of automatically generating code
based on specifications provided by developers. For ex-
ample, X. Jiang et al. (2024) proposed a self-scheduling
approach to code generation, enabling models to solve
complex problems with minimal user intervention. An-
other significant area is automated code testing. F.F. Xu et
al. (2022) examined the effectiveness of LLMs in generat-
ing test scenarios, highlighting their ability to detect errors
at an early stage. Additionally, Z. Zheng et al. (2025) in-
vestigated the role of LLMs in software engineering tasks,
focusing on their capacity to automate complex processes
such as design and testing. Their findings underscored the
importance of advancing memory systems in LLMs to en-
hance performance and adaptability. By integrating mod-
ern memory technologies and data processing algorithms,
these models become more effective in tasks requiring
long-term context retention and flexible interaction with
users. This has created significant opportunities for soft-
ware development automation, allowing for substantial
reductions in the time and resources required to produce
high-quality software products.

The aim of this study was to develop and evaluate in-
novative approaches to the utilisation of memory systems
in LLMs, with the objective of improving their performance
and adaptability to evolving interaction conditions. Addi-
tionally, the study explored the potential of these models
for automating software development.

Materials and Methods
To achieve the research objective, a comprehensive exper-
imental approach was developed, incorporating innovative
memory mechanisms in LLMs to optimise their perfor-
mance. The primary focus was on testing and comparing
different memory management methods, including Mem-
oryBank, Memformer, and PagedAttention, to enhance the
efficiency and accuracy of models in software development
automation scenarios. The experiments were conducted on
a high-performance computing infrastructure comprising
clusters equipped with NVIDIA A100 graphics processors,
enabling efficient data processing through parallel comput-
ing. The Amazon Web Services (AWS) cloud platform was
utilised to scale resources, integrated with local servers. This
setup facilitated the creation of a flexible environment for
handling large datasets and various model configurations.

The three selected memory mechanisms were integrat-
ed into the foundational architecture of GPT-like models:

♦ MemoryBank, designed for long-term context storage
through a hierarchical data structure, allowing for efficient
information retention and retrieval when performing com-
plex tasks. The memory access operation can be formalised as:

mt
 = α × mt-1

 + (1 − α) × ht
 + ∑l

L
= 1 βl

 × ct − l, (1)

where α ∈ 0.1 – memory decay rate, βl – layer-specific
weights (∑l

L
=

1), ct−l – context vectors from l-th layer, ht – cur-

rent hidden state.
♦ Memformer, a transformer with extended memory,

capable of managing complex dependencies between to-
kens, thereby improving generation accuracy and analyt-
ical capabilities. The Memformer extends standard atten-
tion with (2):

Attention(Q, K, V, Mt)
 =

= softmax((QKT + QMt
T)⁄√ dk)

 × [V ; Mt], (2)

where Mₜ is the persistent memory at time t, updated ac-
cording to (3):

Mₜ ₊ ₁=f (Mₜ, Xₜ, Aₜ), (3)

where f being a learnable update function, Xₜ the current
input, and Aₜ the attention matrix.

♦ PagedAttention, a dynamic memory management
approach that loads only relevant contextual data, opti-
mising processing speed. The paged attention mechanism
computes attention scores as:

Aᵢⱼ = (e(qᵢ × kⱼ)⁄√ d))⁄(∑ₗ ∈ P (i) e(qᵢ×kₗ⁄√ d)),i f j ∈ P(i)0, otherwise, (4)

Technologies and Engineering, Vol. 26, No. 1, 202538

рOptimising productivity and automating software development...

where P(i) represents the set of token indices in pages
relevant to token i, determined by a relevance function
such that (5):

P (i) = j ∨ relevance(i, j) > θ, (5)

where θ being a configurable relevance threshold.
To evaluate effectiveness, a test dataset comprising

10,000 diverse queries was created. This dataset included:
generating text responses to short queries; creating large
code segments in Python and C++; long-term interaction
tasks where the query context exceeded 10,000 tokens. The
performance and efficiency of the models were assessed
using the following metrics: latency, measured in millisec-
onds to determine model response speed; tokens per Sec-
ond (TPS), which assessed the number of tokens processed

per second; accuracy, measuring the proportion of correct
responses or generated code that met predefined require-
ments; memory Usage, indicating the amount of memory
consumed by the model during task execution.

The experimental procedure comprised three main
stages. At the first stage, the models were provided with a
technical specification detailing functional and non-func-
tional requirements. The task was to generate code that
fully met these specifications from the outset. At the sec-
ond stage, automated testing was conducted, where the
models generated test scripts to verify the code, assessing
their ability to detect logical and syntactic errors. At the
third stage, existing code bases were refactored to identify
duplication, detect complex logical conditions, and opti-
mise the overall structure (Fig. 1).

Technical Specification Automated Testing Code Refactoring

• LLMs received
functional requirements
• Generated code from
specifications
• Evaluated initial code quality

• Test script generation

• Logical error detection

• Syntax error identification

• Code duplication detection

• Complex logic simplification

• Structure optimization

Figure 1. Experimental procedure for model evaluation
Source: compiled by the author

The results of the experiments were analysed using
statistical tests, including the t-test to compare the mean
values of performance metrics across different memory
configurations. The t-test statistic was calculated using (6):

t = (x̄1
 − x̄2)⁄√ [(s1

2⁄n1)
 + (s2

2⁄n2)], (6)

where x̄1 and x̄2 are the means of the compared memory
configurations, s1

2, s2
2 are their variances, and n1, n2 are the

sample sizes. Results were considered statistically signifi-
cant at p < 0.05, representing a 95% confidence level. Ad-
ditionally, a qualitative analysis of long-term interactions
was carried out, involving manual error coding and an eval-
uation of the contextual relevance of responses. The pro-
posed methodology enabled a comprehensive assessment
of the impact of innovative memory mechanisms on the ef-
ficiency of large language models, providing a foundation
for their further optimisation and practical application in
software development automation.

Results and Discussion
The impact of advanced memory systems on LLM
performance. The findings of this study indicate that in-
novative memory mechanisms significantly enhance key
performance metrics of LLMs. During the experiments,
three approaches to memory organisation – Memo-
ryBank, Memformer, and PagedAttention – were tested
against the baseline model, which did not incorporate
additional optimisations. The evaluation focused on
four key parameters: response time (Latency) in seconds,
throughput (Tokens per Second, TPS), where TPS = Num-
berOfTokens/Time, accuracy (Accuracy) percentage,
which shows the correct answers, and total memory con-
sumption (Memory Usage). The results demonstrated
a clear advantage for models equipped with advanced
memory mechanisms. Table 1 presents the average per-
formance metrics for the baseline LLM configuration
alongside each of the three approaches.

LLM configuration Latency (Mc) TPS Accuracy (%) Memory usage (GB)
Basic 145 1,800 82 12

MemoryBank 100 2,200 88 10
Memformer 90 2,400 90 11

PagedAttention 85 2,500 91 9

Table 1. Comparative performance indicators of LLM with different memory systems

Source: created by the author

As can be seen from Table 1, PagedAttention showed
the best results: the model with this mechanism had the
lowest response time (Latency = 85 ms) and the highest

accuracy (91%). Memformer was a close competitor,
showing a slightly higher response time (90 ms) and
TPS at 2,400. At the same time, MemoryBank showed an

Technologies and Engineering, Vol. 26, No. 1, 2025 39

Sokol

improvement compared to the baseline version, but was
still slightly inferior in speed to the other two options.

The next step was to study long-term interaction, when
the query context exceeded 10,000 tokens. This scenario
simulates situations in which the model has to “remem-
ber” a large amount of information from previous mes-
sages or code fragments. The results showed an advantage
for all three improved memory systems. PagedAttention
again showed the highest efficiency, reducing the time to
search for relevant context by 35% compared to the base-
line method. Memformer and MemoryBank also proved
to be significantly more efficient, providing 20-30% fast-
er response times. At the same time, PagedAttention was
distinguished by dynamically “loading” only those pages of
context that are needed for current processing, which gave
it an advantage over hierarchical or segmented methods. In
addition to quantitative indicators, the quality of the mod-
els’ responses in the long-term mode was evaluated. Page-
dAttention demonstrated the highest rate of correct ref-
erence to the previous context (92%), as well as error-free
consideration of changes made to the original data. Mem-
former had about 89% of correct responses, while in certain
scenarios losing small details implicitly mentioned in pre-
vious queries. MemoryBank (85%) showed a good ability to
combine different data segments in complex questions, but
sometimes mistakenly ignored secondary information if it
was located outside the main “window” of memory.

Thus, these new methods not only accelerated data
processing but also enhanced the ability of models to main-
tain and update long-term context – an essential factor in
tasks involving a large number of interconnected steps.
Contemporary research indicates that the integration of
extended memory mechanisms significantly improves the
performance of LLMs, influencing both inference speed
and response quality. By preserving intermediate states
during data processing, models can rapidly revisit previ-
ously obtained results and refine them without the need to
recompute all steps from the beginning.

U. Antero et al. (2024) highlighted that LLMs equipped
with sufficient memory capacity can perform automatic
code generation and verification more effectively, as they
retain logical connections and can reuse previously gen-
erated fragments. This capability is particularly valuable
when tasks require an analysis of a long history of chang-
es or the broader context of a project. Similarly, B. Kim et
al. (2024) noted that reducing memory access latency is a
critical factor in determining overall model performance.
Optimising memory architecture enables reduced process-
ing time, even in scenarios involving a high degree of par-
allel operations. Furthermore, Z.R.K. Rostam et al. (2024)
demonstrated that a well-configured memory system can
significantly accelerate both training and inference, which
is especially crucial for resource-intensive models.

Additionally, D. Nguyen et al. (2024) proposed an ap-
proach in which the use of larger mini-batches, combined
with optimised GPU allocation procedures, enhances

training efficiency. They emphasised that memory mech-
anisms play a crucial role in preventing the duplication of
effort when processing similar fragments. Another strong
argument in favour of extended memory is its ability to
accurately track logical dependencies within code. R. He et
al. (2024) highlighted that such an approach is particularly
important in the development of complex software solu-
tions, where each module depends on data or logic from
preceding components. Similarly, G. Marvin et al. (2024)
noted that effective prompt engineering is directly influ-
enced by the model’s capacity to retain context. The great-
er the relevance and accuracy of recalled information, the
more precise and coherent the responses.

However, I. Ozkaya (2023) warned that if a model’s
memory becomes cluttered with unnecessary or irrelevant
information, accuracy may decline. Therefore, implement-
ing a mechanism for filtering or selectively “forgetting” re-
dundant data is essential. Many contemporary approaches
incorporate memory-cleaning algorithms or recursive re-
finement techniques to ensure that only the most relevant
details remain in focus. Finally, G. Dolcetti et al. (2024)
emphasised the importance of feedback from testing and
static analysis. They argued that if a model retains the out-
comes of previous attempts and learns from them, it can it-
eratively improve code generation accuracy and accelerate
error correction. This further underscores the critical role
of well-structured memory mechanisms in enabling LLMs
to operate effectively in complex scenarios.

Software development automation: Results of innova-
tive approaches. The second phase of the study focused
on analysing the impact of advanced memory systems on
the ability of LLMs to automate software development. A
series of experiments was conducted in which the models
generated code in Python and C++, automatically created
test scripts, and refactored existing modules in accordance
with best practices.

Initially, each model was provided with a technical
specification detailing both functional and non-function-
al requirements. The task was to generate fully functional
code based on these specifications. To evaluate the results,
two key criteria were considered. The time (in seconds)
required to generate a working prototype. The percent-
age of generated code that met all requirements without
further corrections To facilitate comparison, a graph was
constructed in which the bars represent the proportion of
correctly generated code, while the line indicates the gen-
eration time (Fig. 2).

In the field of software engineering, advanced LLM
memory enables a significant increase in automation
across all stages of development – from the initial formula-
tion of requirements to the refactoring of large code bases.
To effectively interact with code or technical documen-
tation, a model must be capable of “understanding” and
maintaining focus on the context of multiple diverse files,
sometimes even across different programming languages.

Technologies and Engineering, Vol. 26, No. 1, 202540

рOptimising productivity and automating software development...

According to the findings of M.K. Görmez et al. (2024),
LLMs equipped with advanced memory systems can rap-
idly generate prototypes while simultaneously producing
test scenarios that cover the most critical aspects of func-
tionality. This capability allows for the early detection and
resolution of vulnerabilities during development. Addi-
tionally, R. He et al. (2024) observed that memory support
enhances the model’s ability to resolve conflicts between
different project components, particularly in cases where
modifications to one module may introduce issues in an-
other. If an LLM retains an understanding of the logic and
structure of all modules, it becomes significantly more ef-
fective in identifying compromise solutions. At the same
time, G. Dolcetti et al. (2024) emphasised the effectiveness
of feedback mechanisms: when a detected error is recorded
in the model’s memory, it is accounted for in subsequent
code generation attempts, thereby substantially reducing
the recurrence of similar shortcomings. Another crucial
aspect is the ability of LLMs to generate unit tests and

integration tests. As part of the experiment, the models
were tasked with independently developing test scripts to
verify the compliance of the source code with its specifica-
tions. In addition to evaluating the speed of test genera-
tion, the experiment measured the percentage of detected
logical and syntactic errors that had been intentionally
introduced into the source code. The results showed that
PagedAttention successfully generated adequate tests for
94% of functions, detecting 87% of errors. Memformer
achieved comparable results, with 90% of tests deemed
adequate and 85% of defects detected. Meanwhile, Mem-
oryBank demonstrated slightly lower performance, with
87% of adequate tests and an 82% error detection rate. The
baseline LLM configuration, in contrast, identified only
75% of artificial errors and required significantly more
time to generate test scripts. Beyond test generation, the
models also analysed existing projects for code duplica-
tion, complex logical checks, and anti-patterns. Table 2
presents a summary of the refactoring results.

90% 85% 80% 70%

3 3,5
4

6

0%
100%
200%
300%
400%
500%
600%
700%

PagedAttention Memformer MemoryBank Base

Percentage of correct code (%) Time for code generation (seconds)

Figure 2. Comparing the efficiency of code generation with different memory systems
Source: created by the author

LLM configuration Duplication reduction (%) Complexity optimisation (number
of reduced conditions) Recommended patterns (pcs.)

Basic 15 8 2

MemoryBank 30 13 5

Memformer 35 15 6

PagedAttention 40 18 7

Table 2. Comparing code refactoring results

Source: created by the author

PagedAttention proved to be the most effective in re-
ducing code duplication (by 40%) and in suggesting design
patterns, while Memformer and MemoryBank also signif-
icantly outperformed the baseline model. This result can
be attributed to the extended memory capabilities, which
allow the model to retain a larger portion of the code in
focus, quickly analyse its structure, and propose improve-
ments without losing context. Refactoring often requires
consideration of global dependencies between modules,
and in this regard, PagedAttention demonstrated the
greatest flexibility, as it dynamically loaded only the rele-
vant “pages” of data.

Contextual extension also plays a crucial role.
A.N.T. Dieu et al. (2024) demonstrated how a model can dy-
namically access the history of interactions, including past
testing and code reviews. This capability is particularly
useful for quickly adapting to changes in requirements or
resolving logical inconsistencies. Similar approaches have
been proposed by K. Wu (2024), and J. Park & H. Sung (2023),
who focused on runtime optimisation. Their research high-
lights that during GPU-based code generation, the model
can load only the relevant portion of the context, thereby
improving processing speed and reducing memory over-
head. Meanwhile, Y. Bajaj & M.K. Samal (2023) suggested

Technologies and Engineering, Vol. 26, No. 1, 2025 41

Sokol

using LLMs for semi-automatic test generation, where the
model, by retaining an understanding of the code struc-
ture, can immediately identify common logical pitfalls.

This approach is particularly relevant for Continuous
Integration/Continuous Delivery (CI/CD) pipelines. Ac-
cording to X. Hou et al. (2024), an LLM integrated into CI/
CD workflows can validate key functional components with
each new commit, referencing the history of successful and
failed results to enhance software reliability. In turn, S. Jal-
il (2023) highlighted that such automated scenarios are be-
coming increasingly important in complex projects char-
acterised by a high frequency of changes. The integration
of memory enables LLMs to retain key contextual informa-
tion and adapt more rapidly to evolving conditions. This
approach, as emphasised by N. van Viet & N. Vinh (2024),
forms the foundation for intelligent systems capable of in-
dependently determining development or testing priorities.

Finally, R. Hoda et al. (2023) introduced the concept
of “Augmented Agile”, in which an LLM with an advanced
memory mechanism effectively becomes part of the devel-
opment team, assisting in operational decision-making re-
lated to task distribution and code structure. This marks
a significant shift in software development, reducing the
burden on engineers by automating routine error detec-
tion and resolution. Overall, the findings from the sec-
ond phase of the study confirmed that optimised memory
systems substantially enhance the capabilities of LLMs in
automating software development – from code generation
and testing to comprehensive refactoring. This opens up
the prospect of integrating such models into Continuous
Integration (CI) and Continuous Delivery (CD) pipelines,
where they could autonomously handle a significant por-
tion of routine tasks, thereby accelerating release cycles
and reducing the risk of errors.

Comparative analysis and prospects for use. Based
on the data obtained, several general conclusions can be
drawn regarding the effectiveness of each of the examined
approaches and their potential applications in real-world
conditions. First, all three memory systems – MemoryBank,
Memformer, and PagedAttention – demonstrated superior
performance compared to the baseline LLM. According to
the metrics presented, these systems achieve 30-40% fast-
er data processing and 6-9% higher accuracy, which is par-
ticularly critical for scenarios requiring stable handling of
large contexts or long-term interaction with users.

Among these systems, PagedAttention exhibited the
best balance between speed and accuracy. Due to its abil-
ity to dynamically “load” context pages, it achieved the
lowest latency while maintaining high accuracy (91%). It
also outperformed other approaches in refactoring tasks,
as it efficiently analysed complex project structures and
suggested design patterns. Memformer proved particu-
larly effective in complex, multi-layered scenarios, where
projects contain multiple levels of logical dependencies
and large datasets. Its hierarchical model scales effec-
tively while maintaining high accuracy (90%), though its

implementation is more complex and may be excessive
for simpler applications. Conversely, MemoryBank is most
suitable for medium-sized or segmented projects. While
it lags slightly behind the other two approaches in overall
performance, it stands out for its ease of implementation
and flexibility in managing individual data blocks. This
makes it an ideal choice for small teams or projects requir-
ing rapid deployment without unnecessary complexity.

Comparing MemoryBank, Memformer, and PagedAt-
tention with the baseline LLM, all three memory mecha-
nisms demonstrate significant improvements in perfor-
mance and accuracy, particularly when handling large
contexts or highly interconnected tasks. However, each
approach has distinct advantages, making it more suitable
for specific scenarios. PagedAttention dynamically “loads”
only the necessary pages of information, optimising ef-
ficiency and reducing processing overhead. Memformer
scales effectively in complex scenarios involving multiple
logical dependencies. MemoryBank is easier to implement
and well-suited for small to medium-sized projects that re-
quire flexible memory management.

It is worth noting that X. Hou et al. (2024) highlighted
the versatility of long-term memory mechanisms, noting
that they are beneficial not only for code generation but
also for adaptive documentation analysis and project his-
tory management. According to S. Jalil (2023), LLMs that
account for previous changes and specifications serve
as integrators between different development team de-
partments, facilitating better cross-team collaboration.
Meanwhile, N. van Viet & N. Vinh (2024) observed that
the scaling and advancement of memory architectures
has paved the way for self-optimising systems capable of
monitoring design changes and autonomously suggest-
ing improvements. F. Chalumeau et al. (2024) further de-
scribed how innovative memory methods are particularly
valuable for addressing combinatorial explosion prob-
lems, where the model must track and manage multiple
intermediate states simultaneously.

Further efficiency gains are also linked to advance-
ments in hardware solutions. L.A.S. Julien et al. (2023)
highlighted the emergence of enhanced chips and mem-
ory devices, which have simultaneously reduced power
consumption and accelerated data processing. J. Cheng et
al. (2021) emphasised the importance of efficient memo-
ry allocation in multi-threaded code synthesis environ-
ments, where multiple program segments may need to
access shared memory areas within the model. According
to M. Alenezi & M. Akour (2025), these advancements
offer not only technical but also economic benefits, ena-
bling companies to release updates more quickly and re-
duce long-term maintenance costs. It is also worth noting
how memory mechanisms facilitate applications beyond
text-based tasks. M. Zhu et al. (2019) demonstrated that in
generative image modelling (DM-GAN), dynamic memory
improves the alignment between textual descriptions and
visual outputs. By analogy, in software engineering, simi-
lar concepts enable the integration of diverse data types,

Technologies and Engineering, Vol. 26, No. 1, 202542

рOptimising productivity and automating software development...

including code fragments, UML diagrams, and technical
documentation, thereby enhancing project coherence and
facilitating multi-modal processing.

Additionally, J. Cruz-Benito et al. (2019) observed
that extended memory mechanisms significantly enhance
the accuracy of code autocompletion. When a model can
reference the global structure of a project, the number of
logical errors and incorrect recommendations is substan-
tially reduced. Concluding the review, Z. Lyu et al. (2025)
introduced the Top Pass technique, which combines rank-
ing of the best results with a memory mechanism. This
approach enables the model to rapidly filter potential an-
swers, discarding the least relevant options and refining
its outputs more effectively.

Thus, the prospects for integrating innovative memory
systems into LLMs are extensive, ranging from enhancing
productivity and accuracy to improving integration with-
in development workflows. By retaining and adaptively
managing context, these models become more flexible and
versatile, enabling them to handle increasingly complex
tasks in dynamic and continuously evolving environments.
The findings of this study confirm that innovative memory
systems significantly enhance both the performance and
flexibility of large language models. With improved long-
term context management, LLMs are evolving into power-
ful tools for automating software development, capable of
independently generating code, testing it, and suggesting
optimisations. Among the tested approaches, PagedAtten-
tion delivered the best overall performance, though the
choice of a specific memory mechanism depends on fac-
tors such as project scale, complexity, speed requirements,
memory constraints, and ease of implementation. Looking
ahead, these technologies are poised to become industry
standards, fostering more effective collaboration between
humans and AI and laying the groundwork for further in-
novations in software engineering.

Conclusions
The findings of this study confirmed the high efficiency
of innovative memory management approaches in LLMs,
particularly MemoryBank, Memformer, and PagedAtten-
tion. Each of these mechanisms significantly enhanced
model performance and accuracy, which is especially crit-
ical for tasks requiring long-term context retention and

handling a large number of interconnected actions. The
implementation of MemoryBank improved long-term con-
text processing through its efficient hierarchical memory
structure, leading to reduced latency and greater accuracy
in complex tasks. Memformer demonstrated high effective-
ness in scenarios involving complex dependencies between
tokens, enabling deeper context analysis and more precise
generation. PagedAttention, in turn, outperformed other
approaches in key metrics, achieving the highest data pro-
cessing speed and optimal memory usage by dynamically
loading only relevant data.

In the domain of software development automation,
the study highlighted the potential of LLMs in executing
a broad spectrum of tasks, from code generation and test
script creation to refactoring existing software modules.
The integration of advanced memory mechanisms signif-
icantly reduced development time while improving code
quality, minimising both logical and syntactic errors. The
use of PagedAttention in CI/CD processes proved particu-
larly promising, as its dynamic context management opti-
mised the code testing and verification pipeline.

Overall, the study confirmed that enhancing memory
systems not only improves the performance and accuracy
of large language models but also expands their potential
applications. Further research in this field could explore
the integration of LLMs into multi-component systems
that support decision-making across various sectors, from
medicine to financial analytics. In particular, advance-
ments in technologies similar to PagedAttention could
lay the foundation for new solutions prioritising scalabil-
ity, adaptability, and efficiency. Innovative memory man-
agement approaches have the potential to become the de
facto industry standard, enabling fast, precise, and effi-
cient problem-solving across a wide range of complexities.
These developments could fundamentally reshape the way
data is processed and software is developed, unlocking new
opportunities for automation, personalisation, and seam-
less integration into existing workflows.

Acknowledgements
None.

Conflict of Interest
None.

References
[1] Alenezi, M., & Akour, M. (2025). AI-Driven innovations in software engineering: A review of current practices

and future directions. Applied Sciences, 15(3), article number 1344. doi: 10.3390/app15031344.
[2] Antero, U., Blanco, F., Onativia, J., & Salle, D. (2024). Harnessing the power of large language models for automated

code generation and verification. Robotics, 13(9), article number 137. doi: 10.3390/robotics13090137.
[3] Bajaj, Y., & Samal, M.K. (2023). Accelerating software quality: Unleashing the power of generative AI for automated

test-case generation and bug identification. International Journal for Research in Applied Science and Engineering
Technology, 11(7), 345-350. doi: 10.22214/ijraset.2023.54628.

[4] Chalumeau, F., Shabe, R., de Nicola, N., Pretorius, A., Barrett, T.D., & Grinsztajn, N. (2024). Memory-enhanced neural
solvers for efficient adaptation in combinatorial optimization. doi: 10.48550/arXiv.2406.16424.

[5] Cheng, J., Fleming, S., Chen, Y.T., Anderson, J., Wickerson, J., & Constantinides, G.A. (2021). Efficient memory
arbitration in high-level synthesis from multi-threaded code. IEEE Transactions on Computers, 71(4), 933-946.
doi: 10.1109/tc.2021.3066466.

https://doi.org/10.3390/app15031344
https://doi.org/10.3390/robotics13090137
https://doi.org/10.22214/ijraset.2023.54628
https://doi.org/10.48550/arXiv.2406.16424
https://doi.org/10.1109/tc.2021.3066466

Technologies and Engineering, Vol. 26, No. 1, 2025 43

Sokol

[6] Cruz-Benito, J., Sánchez-Prieto, J.C., Therón, R., & García-Peñalvo, F.J. (2019). Measuring students’ acceptance to
AI-Driven assessment in eLearning: Proposing a first TAM-Based research model. In P. Zaphiris & A. Ioannou (Eds.),
6th international conference: Learning and collaboration technologies. Designing learning experiences (pp. 15-25). Cham:
Springer. doi: 10.1007/978-3-030-21814-0_2.

[7] Dieu, A.N.T., Nguyen, H.T., & Cong, C.T.D. (2024). The enhanced context for AI-generated learning advisors with
Advanced RAG. In L.-S. Lê, M. Kappes & J. Küng (Eds.), 18th international conference on advanced computing and analytics
(pp. 94-101). Ben Cat: Institute of Electrical and Electronics Engineers. doi: 10.1109/ACOMPA64883.2024.00021.

[8] Dolcetti, G., Arceri, V., Iotti, E., Maffeis, S., Cortesi, A., & Zaffanella, E. (2024). Helping LLMs improve code generation
using feedback from testing and static analysis. doi: 10.48550/arxiv.2412.14841.

[9] Görmez, M.K., Yılmaz, M., & Clarke, P.M. (2024). Large language models for software engineering: A systematic
mapping study. In M. Yilmaz, P. Clarke, A. Riel, R. Messnarz, C. Greiner & T. Peisl (Eds.), 31st European conference:
Systems, software and services process improvement (pp. 64-79). Cham: Springer. doi: 10.1007/978-3-031-71139-8_5.

[10] He, R., Ying, A., & Hu, X. (2024). Improving OpenDevin: Boosting code generation LLM through advanced memory
management. Applied and Computational Engineering, 68(1), 320-327. doi: 10.54254/2755-2721/68/20241506.

[11] Hoda, R., Dam, H., Tantithamthavorn, C., Thongtanunam, P., & Storey, M. (2023). Augmented agile: Human-centered
AI-assisted software management. IEEE Software, 40(4), 106-109. doi: 10.1109/MS.2023.3268725.

[12] Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J., & Wang, H. (2024). Large language models
for software engineering: A systematic literature review. ACM Transactions on Software Engineering and Methodology,
33(8), article number 220. doi: 10.1145/3695988.

[13] Jalil, S. (2023). The transformative influence of large language models on software development. doi: 10.48550/
arXiv.2311.16429.

[14] Jiang, X., Dong, Y., Wang, L., Fang, Z., Shang, Q., Li, G., Jin, Z., & Jiao, W. (2024). Self-planning code generation
with large language models. ACM Transactions on Software Engineering and Methodology, 33(7), article number 182.
doi: 10.1145/3672456.

[15] Julien, L.A.S., Tang, X., & Gaillardon, P. (2023). Innovative memory architectures using functionality enhanced
devices. In M.M.S. Aly & A. Chattopadhyay (Eds.), Emerging computing: From devices to systems: Looking beyond moore
and von neumann (pp. 47-83). Singapore: Springer. doi: 10.1007/978-981-16-7487-7_.

[16] Kim, B., et al. (2024). The breakthrough memory solutions for improved performance on LLM inference. IEEE Micro,
44(3), 40-48. doi: 10.1109/MM.2024.3375352.

[17] Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L. Yu, C.H., Gonzales, J., Zhang, H., & Stoica, I. (2023). Efficient memory
management for large language model serving with pagedattention. In Proceedings of the 29th symposium on operating
systems principles (pp. 611-626). New York: Association for Computing Machinery. doi: 10.1145/3600006.3613165.

[18] Liu, B., Jiang, Y., Zhang, Y., Niu, N., Li, G., & Liu, H. (2024). An empirical study on the potential of LLMs in automated
software refactoring. doi: 10.48550/arXiv.2411.04444.

[19] Lyu, Z., Li, X., Xie, Z., & Li, M. (2025). Top Pass: Improve code generation by pass@k-maximized code ranking.
Frontiers of Computer Science, 19(8), article number 198341. doi: 10.1007/s11704-024-40415-9.

[20] Marvin, G., Hellen, N., Jjingo, D., & Nakatumba-Nabende, J. (2024). Prompt engineering in large language models.
In I.J. Jacob, S. Piramuthu & P. Falkowski-Gilski (Eds.), Proceedings of ICDICI 2023: Data intelligence and cognitive
informatics (pp. 387-402). Singapore: Springer. doi: 10.1007/978-981-99-7962-2_30.

[21] Nguyen, D., Yang, W., Anand, R., Yang, Y., & Mirzasoleiman, B. (2024). Mini-batch coresets for memory-efficient training
of large language models. doi: 10.48550/arXiv.2407.19580.

[22] Ozkaya, I. (2023). Application of large language models to software engineering tasks: Opportunities, risks, and
implications. IEEE Software, 40(3), 4-8. doi: 10.1109/MS.2023.3248401.

[23] Park, J., & Sung, H. (2023). XLA-NDP: Efficient scheduling and code generation for Deep Learning model training on
Near-Data Processing Memory. IEEE Computer Architecture Letters, 22(1), 61-64. doi: 10.1109/LCA.2023.3261136.

[24] Rostam, Z.R.K., Szénási, S., & Kertész, G. (2024). Achieving peak performance for large language models: A systematic
review. IEEE Access, 12, 96017-96050. doi: 10.1109/access.2024.3424945.

[25] Sagi, S. (2024). Advancing AI: Enhancing large language model performance through GPU optimization techniques.
International Journal of Science and Research, 13(3), 630-633. doi: 10.21275/sr24309100709.

[26] Schäfer, M., Nadi, S., Eghbali, A., & Tip, F. (2023). An empirical evaluation of using large language models for automated
unit test generation. IEEE Transactions on Software Engineering, 50(1), 85-105. doi: 10.1109/tse.2023.3334955.

[27] Shantyr, A. (2024). Specifics of quality assessment models application at development and use stages of software
systems. Information Technologies and Computer Engineering, 21(1), 127-138. doi: 10.31649/1999-9941-2024-59-
1-127-138.

[28] van Viet, N., & Vinh, N. (2024). Large language models in software engineering. Journal of Education for Sustainable
Innovation, 2(2), 146-156. doi: 10.56916/jesi.v2i2.968.

[29] Wu, K. (2024). Code generation and runtime techniques for enabling data efficient deep learning training on GPUs. Urbana:
University of Illinois Urbana-Champaign. doi: 10.13140/RG.2.2.15485.47840.

https://doi.org/10.1007/978-3-030-21814-0_2
https://doi.org/10.1109/ACOMPA64883.2024.00021
https://doi.org/10.48550/arxiv.2412.14841
https://doi.org/10.1007/978-3-031-71139-8_5
https://doi.org/10.54254/2755-2721/68/20241506
https://doi.org/10.1109/MS.2023.3268725
https://doi.org/10.1145/3695988
https://doi.org/10.48550/arXiv.2311.16429
https://doi.org/10.48550/arXiv.2311.16429
https://doi.org/10.1145/3672456
https://doi.org/10.1007/978-981-16-7487-7_
https://doi.org/10.1109/MM.2024.3375352
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.48550/arXiv.2411.04444
https://doi.org/10.1007/s11704-024-40415-9
https://doi.org/10.1007/978-981-99-7962-2_30
https://doi.org/10.48550/arXiv.2407.19580
https://doi.org/10.1109/MS.2023.3248401
https://doi.org/10.1109/LCA.2023.3261136
https://doi.org/10.1109/access.2024.3424945
https://doi.org/10.21275/sr24309100709
https://doi.org/10.1109/tse.2023.3334955
https://doi.org/10.31649/1999-9941-2024-59-1-127-138
https://doi.org/10.31649/1999-9941-2024-59-1-127-138
https://doi.org/10.56916/jesi.v2i2.968
http://dx.doi.org/10.13140/RG.2.2.15485.47840

Technologies and Engineering, Vol. 26, No. 1, 202544

рOptimising productivity and automating software development...

[30] Wu, Q., Lan, Z., Gu, J., Geramifard, A., & Yu, Z. (2020). Memformer: The memory-augmented transformer. doi: 10.48550/
arXiv.2010.06891.

[31] Xu, F.F., Alon, U., Neubig, G., & Hellendoorn, V.J. (2022). A systematic evaluation of large language models of code.
In Proceedings of the 6th ACM sigplan international symposium on machine programming (pp. 1-10). New York: Association
for Computing Machinery. doi: 10.1145/3520312.3534862.

[32] Zheng, Z., Ning, K., Zhong, Q., Chen, J., Chen, W., Guo, L., Wang, W., & Wang, Y. (2025). Towards an understanding
of large language models in software engineering tasks. Empirical Software Engineering, 30, article number 50.
doi: 10.1007/s10664-024-10602-0.

[33] Zhong, W., Guo, L., Gao, Q., Ye, H., & Wang, Y. (2024). MemoryBank: Enhancing large language models with long-term
memory. In Proceedings of the AAAI conference on artificial intelligence (pp. 19724-19731). Washington: Association for
the Advancement of Artificial Intelligence doi: 10.1609/aaai.v38i17.29946.

[34] Zhu, M., Pan, P., Chen, W., & Yang, Y. (2019). DM-GAN: Dynamic memory generative adversarial networks for text-to-
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5802-5810).
Long Beach: Institute of Electrical and Electronics Engineers.

Оптимізація продуктивності та автоматизація
розробки програмного забезпечення: інноваційні підходи
до системи пам’яті у великих мовних моделях

Олена Сокол
Магістр
Київський національний університет імені Тараса Шевченка
01601, вул. Володимирська, 60, м. Київ, Україна
https://orcid.org/0009-0005-5160-460X

Анотація. Це дослідження розглядало інноваційні підходи до вдосконалення систем пам’яті у великих мовних
моделях для підвищення ефективності та автоматизації розробки програмного забезпечення. Основна увага
приділялася оптимізації систем пам’яті, які забезпечують довготривале зберігання контексту та полегшують
адаптацію моделі до мінливих умов взаємодії. У дослідженні проаналізовано сучасні методи зберігання та
обробки даних, які підвищують здатність моделей ефективно обробляти великі обсяги інформації. Це включало
використання спеціалізованих алгоритмів і механізмів пам’яті, які підвищують точність і адаптивність
великих мовних моделей при виконанні складних завдань. Другим напрямком дослідження було вивчення
можливостей великих мовних моделей в автоматизації розробки програмного забезпечення. Оцінювалося, як
ці моделі можуть генерувати код, оптимізувати його та виявляти помилки. Особливу увагу приділено аналізу
впливу автоматизації на якість програмного забезпечення та час розробки. У цьому контексті дослідження
вивчало використання моделей великих мов для автоматизації повторюваних завдань, генерації тестів та
впровадження найкращих практик програмування. Отримані результати свідчили про те, що покращення систем
пам’яті великих мовних моделей значно підвищує їхню ефективність у задачах, що потребують довготривалої
взаємодії. Показано, що інтеграція таких моделей у процеси розробки програмного забезпечення дозволяє
скоротити витрати часу та ресурсів при одночасному підвищенні якості продукту. Практична значущість цього
дослідження полягає у формулюванні рекомендацій щодо оптимального використання моделей великих мов
у сфері інформаційних технологій

Ключові слова: контекстна обробка; оптимізація алгоритмів; генерація коду; інтелектуальні агенти; обробка
великих даних; автоматизація; моделювання взаємодії

https://doi.org/10.48550/arXiv.2010.06891
https://doi.org/10.48550/arXiv.2010.06891
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1007/s10664-024-10602-0
https://doi.org/10.1609/aaai.v38i17.29946
file:///D:/%d0%a2%d0%b5%d1%85%d0%bd%d0%be%d0%bb%d0%be%d0%b3%d1%96%d1%97%20%d1%82%d0%b0%20%d1%96%d0%bd%d0%b6%d0%b8%d0%bd%d1%96%d1%80%d0%b8%d0%bd%d0%b3/%d0%a2%d0%86_26_1_2025/%5b1%5d%09https:/openaccess.thecvf.com/content_CVPR_2019/papers/Zhu_DM-GAN_Dynamic_Memory_Generative_Adversarial_Networks_for_Text-To-Image_Synthesis_CVPR_2019_paper.pdf.
file:///D:/%d0%a2%d0%b5%d1%85%d0%bd%d0%be%d0%bb%d0%be%d0%b3%d1%96%d1%97%20%d1%82%d0%b0%20%d1%96%d0%bd%d0%b6%d0%b8%d0%bd%d1%96%d1%80%d0%b8%d0%bd%d0%b3/%d0%a2%d0%86_26_1_2025/%5b1%5d%09https:/openaccess.thecvf.com/content_CVPR_2019/papers/Zhu_DM-GAN_Dynamic_Memory_Generative_Adversarial_Networks_for_Text-To-Image_Synthesis_CVPR_2019_paper.pdf.
https://orcid.org/0009-0005-5160-460X

