
Optimising productivity and automating software 
development: Innovative memory system approaches
in large language models
Olena Sokol*

Master of Science
Taras Shevchenko National University of Kyiv
01601, 60 Volodymyrska Str., Kyiv, Ukraine
https://orcid.org/0009-0005-5160-460X

*Corresponding author

Copyright © The Author(s). This is an open access article distributed under the terms of the 
Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/)

Received: 29.08.2024  
Revised: 20.01.2025 
Accepted: 26.02.2025

UDC 004.021 Doi: 10.30857/2786-5371.2025.1.3

Journal homepage: https://technologies-engineering.com.ua/en
Vol. 26, No. 1, 2025

TECHNOLOGIES AND ENGINEERING

Suggested Citation:
Sokol, O. (2025). Optimising productivity and automating software development: Innovative memory system approaches in large 
language models. Technologies and Engineering, 26(1), 36-44. doi: 10.30857/2786-5371.2025.1.3.

Abstract. This study explored innovative approaches to enhancing memory systems in large language models to 
improve efficiency and automate software development. The primary focus was on optimising memory systems that enable 
long-term context storage and facilitate model adaptation to evolving interaction conditions. The research analysed 
contemporary methods of data storage and processing that enhance the ability of models to handle large volumes of 
information efficiently. This included the utilisation of specialised algorithms and memory mechanisms that improve the 
accuracy and adaptability of large language models in executing complex tasks. A secondary focus of the study examined 
the capabilities of large language models in automating software development. It assessed how these models can generate 
code, optimise it, and perform error detection. Particular attention was given to analysing the impact of automation 
on software quality and development time. In this context, the study investigated the use of large language models for 
automating repetitive tasks, generating tests, and implementing best programming practices. The findings indicated that 
enhancing the memory systems of large language models significantly improves their efficiency in tasks requiring long-
term interaction. Integrating such models into software development processes has been shown to reduce both time and 
resource expenditures while enhancing product quality. The practical significance of this study lies in the formulation of 
recommendations for the optimal utilisation of large language models in the field of information technology

Keywords: contextual processing; algorithm optimisation; code generation; intelligent agents; big data processing; 
automation; interaction modelling

Introduction
The modern development of artificial intelligence (AI) is 
opening up new opportunities across various domains, 
including software development. Large language models 
(LLMs) occupy a central role in this process due to their 
ability to analyse, generate, and adapt to changing condi-
tions. A crucial factor influencing the performance of these 
models is the memory system. Through memory optimi-
sation, LLMs can interact effectively with users, preserve 
context, and adapt to new data. This study aims to explore 
innovative approaches to the utilisation of memory sys-
tems in LLMs, as well as to analyse the potential for auto-
mating software development using these models.

One of the key challenges in the operation of large 
language models is the preservation of long-term context 

when processing vast amounts of data. Traditional ap-
proaches to information processing often face limitations 
in speed and accuracy, which impact the adaptability of 
these models. W. Zhong et al. (2024) proposed the Memo-
ryBank system, which enhances the long-term memory of 
language models by enabling more efficient context storage 
and retrieval. This significantly improved the accuracy and 
stability of models when handling lengthy texts. Innova-
tive methods such as hierarchical memory structures, dy-
namic context windows, and compression algorithms have 
facilitated more efficient data storage. Q. Wu et al. (2020) 
introduced Memformer, an extended memory transformer 
that allows models to manage complex dependencies while 
optimising memory usage.

https://orcid.org/0009-0005-5160-460X
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Another important aspect is the integration of mem-
ory with big data storage and processing. The use of dis-
tributed memory systems, cloud computing, and special-
ised hardware solutions can significantly enhance model 
performance. For example, W. Kwon et al. (2023) proposed  
PagedAttention, a method for efficient memory man-
agement, which reduced latency and increased the speed 
of real-time data processing. S.  Sagi (2024) explored 
optimisation techniques for graphics processing units 
(GPUs) aimed at improving the performance of LLMs, 
enabling the modelling of more complex problems while 
reducing computational costs. Innovations in memory 
technology also create new opportunities for the devel-
opment of intelligent agents. With improved memory 
systems, such agents can not only analyse data in real 
time but also make informed decisions based on accu-
mulated experience.

The automation of software development is another 
promising application of large language models. By lever-
aging automation capabilities such as code generation, op-
timisation, and verification, developers gain powerful tools 
to reduce development time and enhance software qual-
ity. M.  Schäfer  et al.  (2023) investigated the use of LLMs 
for automated testing, demonstrating how these models 
generate test scripts and verify component compatibility. 
Beyond code generation, LLMs are also capable of opti-
mising code. For instance, B. Liu et al. (2024) examined the 
potential of automatic software refactoring using LLMs, 
highlighting their contribution to improving development 
efficiency and quality. Moreover, ensuring high-quality 
software solutions throughout their lifecycle is essential 
for enhancing the efficiency of LLMs. As A. Shantyr (2024) 
states, the use of combined quality models not only facili-
tates the assessment of software system efficiency but also 
ensures compliance with established criteria throughout 
the entire development process.

LLMs are capable of automatically generating code 
based on specifications provided by developers. For ex-
ample, X.  Jiang  et al.  (2024) proposed a self-scheduling 
approach to code generation, enabling models to solve 
complex problems with minimal user intervention. An-
other significant area is automated code testing. F.F. Xu et 
al. (2022) examined the effectiveness of LLMs in generat-
ing test scenarios, highlighting their ability to detect errors 
at an early stage. Additionally, Z.  Zheng  et al.  (2025) in-
vestigated the role of LLMs in software engineering tasks, 
focusing on their capacity to automate complex processes 
such as design and testing. Their findings underscored the 
importance of advancing memory systems in LLMs to en-
hance performance and adaptability. By integrating mod-
ern memory technologies and data processing algorithms, 
these models become more effective in tasks requiring 
long-term context retention and flexible interaction with 
users. This has created significant opportunities for soft-
ware development automation, allowing for substantial 
reductions in the time and resources required to produce 
high-quality software products.

The aim of this study was to develop and evaluate in-
novative approaches to the utilisation of memory systems 
in LLMs, with the objective of improving their performance 
and adaptability to evolving interaction conditions. Addi-
tionally, the study explored the potential of these models 
for automating software development.

Materials and Methods
To achieve the research objective, a comprehensive exper-
imental approach was developed, incorporating innovative 
memory mechanisms in LLMs to optimise their perfor-
mance. The primary focus was on testing and comparing 
different memory management methods, including Mem-
oryBank, Memformer, and PagedAttention, to enhance the 
efficiency and accuracy of models in software development 
automation scenarios. The experiments were conducted on 
a high-performance computing infrastructure comprising 
clusters equipped with NVIDIA  A100  graphics processors, 
enabling efficient data processing through parallel comput-
ing. The Amazon Web Services (AWS) cloud platform was 
utilised to scale resources, integrated with local servers. This 
setup facilitated the creation of a flexible environment for 
handling large datasets and various model configurations.

The three selected memory mechanisms were integrat-
ed into the foundational architecture of GPT-like models:

♦ MemoryBank, designed for long-term context storage 
through a hierarchical data structure, allowing for efficient 
information retention and retrieval when performing com-
plex tasks. The memory access operation can be formalised as:

mt
 = α × mt-1

 + (1 − α) × ht
 + ∑l

L
= 1 βl

 × ct − l,                (1)

where α ∈ 0.1  – memory decay rate, βl  – layer-specific 
weights (∑l

L
=

 
1), ct−l – context vectors from l-th layer, ht – cur-

rent hidden state.
♦ Memformer, a transformer with extended memory, 

capable of managing complex dependencies between to-
kens, thereby improving generation accuracy and analyt-
ical capabilities. The Memformer extends standard atten-
tion with (2):

Attention(Q, K, V, Mt)
 =

= softmax((QKT + QMt
T)⁄√ dk)

 × [V ; Mt ],               (2)

where Mₜ is the persistent memory at time t, updated ac-
cording to (3):

Mₜ ₊ ₁=f (Mₜ, Xₜ, Aₜ),                                (3)

where f being a learnable update function, Xₜ the current 
input, and Aₜ the attention matrix.

♦ PagedAttention, a dynamic memory management 
approach that loads only relevant contextual data, opti-
mising processing speed. The paged attention mechanism 
computes attention scores as:

Aᵢⱼ = (e(qᵢ × kⱼ)⁄√ d))⁄(∑ₗ ∈ P (i) e(qᵢ×kₗ⁄√ d)),i f j ∈ P(i)0, otherwise,  (4)
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where P(i) represents the set of token indices in pages 
relevant to token i, determined by a relevance function 
such that (5):

P (i) = j ∨ relevance(i, j) > θ,                        (5)

where θ being a configurable relevance threshold.
To evaluate effectiveness, a test dataset comprising 

10,000 diverse queries was created. This dataset included: 
generating text responses to short queries; creating large 
code segments in Python and C++; long-term interaction 
tasks where the query context exceeded 10,000 tokens. The 
performance and efficiency of the models were assessed 
using the following metrics: latency, measured in millisec-
onds to determine model response speed; tokens per Sec-
ond (TPS), which assessed the number of tokens processed 

per second; accuracy, measuring the proportion of correct 
responses or generated code that met predefined require-
ments; memory Usage, indicating the amount of memory 
consumed by the model during task execution.

The experimental procedure comprised three main 
stages. At the first stage, the models were provided with a 
technical specification detailing functional and non-func-
tional requirements. The task was to generate code that 
fully met these specifications from the outset. At the sec-
ond stage, automated testing was conducted, where the 
models generated test scripts to verify the code, assessing 
their ability to detect logical and syntactic errors. At the 
third stage, existing code bases were refactored to identify 
duplication, detect complex logical conditions, and opti-
mise the overall structure (Fig. 1).

Technical Specification Automated Testing Code Refactoring 

• LLMs received 
functional requirements 
• Generated code from 
specifications 
• Evaluated initial code quality 

• Test script generation 

• Logical error detection 

• Syntax error identification 

• Code duplication detection 

• Complex logic simplification 

• Structure optimization

Figure 1. Experimental procedure for model evaluation
Source: compiled by the author

The results of the experiments were analysed using 
statistical tests, including the t-test to compare the mean 
values of performance metrics across different memory 
configurations. The t-test statistic was calculated using (6):

t = (x̄1
 − x̄2)⁄√ [(s1

2⁄n1)
 + (s2

2⁄n2)],                   (6)

where x̄1 and x̄2 are the means of the compared memory 
configurations, s1

2, s2
2 are their variances, and n1, n2 are the 

sample sizes. Results were considered statistically signifi-
cant at p < 0.05, representing a 95% confidence level. Ad-
ditionally, a qualitative analysis of long-term interactions 
was carried out, involving manual error coding and an eval-
uation of the contextual relevance of responses. The pro-
posed methodology enabled a comprehensive assessment 
of the impact of innovative memory mechanisms on the ef-
ficiency of large language models, providing a foundation 
for their further optimisation and practical application in 
software development automation.

Results and Discussion
The impact of advanced memory systems on LLM 
performance. The findings of this study indicate that in-
novative memory mechanisms significantly enhance key 
performance metrics of LLMs. During the experiments, 
three approaches to memory organisation  – Memo-
ryBank, Memformer, and PagedAttention  – were tested 
against the baseline model, which did not incorporate 
additional optimisations. The evaluation focused on 
four key parameters: response time (Latency) in seconds, 
throughput (Tokens per Second, TPS), where TPS = Num-
berOfTokens/Time, accuracy (Accuracy) percentage, 
which shows the correct answers, and total memory con-
sumption (Memory Usage). The results demonstrated 
a clear advantage for models equipped with advanced 
memory mechanisms. Table 1 presents the average per-
formance metrics for the baseline LLM configuration 
alongside each of the three approaches.

LLM configuration Latency (Mc) TPS Accuracy (%) Memory usage (GB)
Basic 145 1,800 82 12

MemoryBank 100 2,200 88 10
Memformer 90 2,400 90 11

PagedAttention 85 2,500 91 9

Table 1. Comparative performance indicators of LLM with different memory systems

Source: created by the author

As can be seen from Table 1, PagedAttention showed 
the best results: the model with this mechanism had the 
lowest response time (Latency  =  85 ms) and the highest  

accuracy  (91%). Memformer was a close competitor, 
showing a slightly higher response time (90  ms) and 
TPS at  2,400. At the same time, MemoryBank showed an  
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improvement compared to the baseline version, but was 
still slightly inferior in speed to the other two options.

The next step was to study long-term interaction, when 
the query context exceeded 10,000  tokens. This scenario 
simulates situations in which the model has to “remem-
ber” a large amount of information from previous mes-
sages or code fragments. The results showed an advantage 
for all three improved memory systems. PagedAttention 
again showed the highest efficiency, reducing the time to 
search for relevant context by 35% compared to the base-
line method. Memformer and MemoryBank also proved 
to be significantly more efficient, providing 20-30% fast-
er response times. At the same time, PagedAttention was 
distinguished by dynamically “loading” only those pages of 
context that are needed for current processing, which gave 
it an advantage over hierarchical or segmented methods. In 
addition to quantitative indicators, the quality of the mod-
els’ responses in the long-term mode was evaluated. Page-
dAttention demonstrated the highest rate of correct ref-
erence to the previous context (92%), as well as error-free 
consideration of changes made to the original data. Mem-
former had about 89% of correct responses, while in certain 
scenarios losing small details implicitly mentioned in pre-
vious queries. MemoryBank (85%) showed a good ability to 
combine different data segments in complex questions, but 
sometimes mistakenly ignored secondary information if it 
was located outside the main “window” of memory.

Thus, these new methods not only accelerated data 
processing but also enhanced the ability of models to main-
tain and update long-term context – an essential factor in 
tasks involving a large number of interconnected steps. 
Contemporary research indicates that the integration of 
extended memory mechanisms significantly improves the 
performance of LLMs, influencing both inference speed 
and response quality. By preserving intermediate states 
during data processing, models can rapidly revisit previ-
ously obtained results and refine them without the need to 
recompute all steps from the beginning.

U. Antero et al. (2024) highlighted that LLMs equipped 
with sufficient memory capacity can perform automatic 
code generation and verification more effectively, as they 
retain logical connections and can reuse previously gen-
erated fragments. This capability is particularly valuable 
when tasks require an analysis of a long history of chang-
es or the broader context of a project. Similarly, B. Kim et 
al. (2024) noted that reducing memory access latency is a 
critical factor in determining overall model performance. 
Optimising memory architecture enables reduced process-
ing time, even in scenarios involving a high degree of par-
allel operations. Furthermore, Z.R.K. Rostam et al.  (2024) 
demonstrated that a well-configured memory system can 
significantly accelerate both training and inference, which 
is especially crucial for resource-intensive models.

Additionally, D. Nguyen et al. (2024) proposed an ap-
proach in which the use of larger mini-batches, combined 
with optimised GPU allocation procedures, enhances  

training efficiency. They emphasised that memory mech-
anisms play a crucial role in preventing the duplication of 
effort when processing similar fragments. Another strong 
argument in favour of extended memory is its ability to 
accurately track logical dependencies within code. R. He et 
al. (2024) highlighted that such an approach is particularly 
important in the development of complex software solu-
tions, where each module depends on data or logic from 
preceding components. Similarly, G.  Marvin  et al.  (2024) 
noted that effective prompt engineering is directly influ-
enced by the model’s capacity to retain context. The great-
er the relevance and accuracy of recalled information, the 
more precise and coherent the responses.

However, I.  Ozkaya  (2023) warned that if a model’s 
memory becomes cluttered with unnecessary or irrelevant 
information, accuracy may decline. Therefore, implement-
ing a mechanism for filtering or selectively “forgetting” re-
dundant data is essential. Many contemporary approaches 
incorporate memory-cleaning algorithms or recursive re-
finement techniques to ensure that only the most relevant 
details remain in focus. Finally, G.  Dolcetti  et al.  (2024) 
emphasised the importance of feedback from testing and 
static analysis. They argued that if a model retains the out-
comes of previous attempts and learns from them, it can it-
eratively improve code generation accuracy and accelerate 
error correction. This further underscores the critical role 
of well-structured memory mechanisms in enabling LLMs 
to operate effectively in complex scenarios.

Software development automation: Results of innova-
tive approaches. The second phase of the study focused 
on analysing the impact of advanced memory systems on 
the ability of LLMs to automate software development. A 
series of experiments was conducted in which the models 
generated code in Python and C++, automatically created 
test scripts, and refactored existing modules in accordance 
with best practices.

Initially, each model was provided with a technical 
specification detailing both functional and non-function-
al requirements. The task was to generate fully functional 
code based on these specifications. To evaluate the results, 
two key criteria were considered. The time (in seconds) 
required to generate a working prototype. The percent-
age of generated code that met all requirements without 
further corrections To facilitate comparison, a graph was 
constructed in which the bars represent the proportion of 
correctly generated code, while the line indicates the gen-
eration time (Fig. 2).

In the field of software engineering, advanced LLM 
memory enables a significant increase in automation 
across all stages of development – from the initial formula-
tion of requirements to the refactoring of large code bases. 
To effectively interact with code or technical documen-
tation, a model must be capable of “understanding” and 
maintaining focus on the context of multiple diverse files, 
sometimes even across different programming languages.
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According to the findings of M.K. Görmez et al. (2024), 
LLMs equipped with advanced memory systems can rap-
idly generate prototypes while simultaneously producing 
test scenarios that cover the most critical aspects of func-
tionality. This capability allows for the early detection and 
resolution of vulnerabilities during development. Addi-
tionally, R. He et al. (2024) observed that memory support 
enhances the model’s ability to resolve conflicts between 
different project components, particularly in cases where 
modifications to one module may introduce issues in an-
other. If an LLM retains an understanding of the logic and 
structure of all modules, it becomes significantly more ef-
fective in identifying compromise solutions. At the same 
time, G. Dolcetti et al. (2024) emphasised the effectiveness 
of feedback mechanisms: when a detected error is recorded 
in the model’s memory, it is accounted for in subsequent 
code generation attempts, thereby substantially reducing 
the recurrence of similar shortcomings. Another crucial 
aspect is the ability of LLMs to generate unit tests and  

integration tests. As part of the experiment, the models 
were tasked with independently developing test scripts to 
verify the compliance of the source code with its specifica-
tions. In addition to evaluating the speed of test genera-
tion, the experiment measured the percentage of detected 
logical and syntactic errors that had been intentionally 
introduced into the source code. The results showed that 
PagedAttention successfully generated adequate tests for 
94% of functions, detecting 87% of errors. Memformer 
achieved comparable results, with 90% of tests deemed 
adequate and 85% of defects detected. Meanwhile, Mem-
oryBank demonstrated slightly lower performance, with 
87% of adequate tests and an 82% error detection rate. The 
baseline LLM configuration, in contrast, identified only 
75% of artificial errors and required significantly more 
time to generate test scripts. Beyond test generation, the 
models also analysed existing projects for code duplica-
tion, complex logical checks, and anti-patterns. Table  2 
presents a summary of the refactoring results.

90% 85% 80% 70%

3 3,5
4

6

0%
100%
200%
300%
400%
500%
600%
700%

PagedAttention Memformer MemoryBank Base

Percentage of correct code (%) Time for code generation (seconds)

Figure 2. Comparing the efficiency of code generation with different memory systems
Source: created by the author

LLM configuration Duplication reduction (%) Complexity optimisation (number 
of reduced conditions) Recommended patterns (pcs.)

Basic 15 8 2

MemoryBank 30 13 5

Memformer 35 15 6

PagedAttention 40 18 7

Table 2. Comparing code refactoring results

Source: created by the author

PagedAttention proved to be the most effective in re-
ducing code duplication (by 40%) and in suggesting design 
patterns, while Memformer and MemoryBank also signif-
icantly outperformed the baseline model. This result can 
be attributed to the extended memory capabilities, which 
allow the model to retain a larger portion of the code in 
focus, quickly analyse its structure, and propose improve-
ments without losing context. Refactoring often requires 
consideration of global dependencies between modules, 
and in this regard, PagedAttention demonstrated the 
greatest flexibility, as it dynamically loaded only the rele-
vant “pages” of data.

Contextual extension also plays a crucial role. 
A.N.T. Dieu et al. (2024) demonstrated how a model can dy-
namically access the history of interactions, including past 
testing and code reviews. This capability is particularly 
useful for quickly adapting to changes in requirements or 
resolving logical inconsistencies. Similar approaches have 
been proposed by K. Wu (2024), and J. Park & H. Sung (2023), 
who focused on runtime optimisation. Their research high-
lights that during GPU-based code generation, the model 
can load only the relevant portion of the context, thereby 
improving processing speed and reducing memory over-
head. Meanwhile, Y. Bajaj & M.K. Samal (2023) suggested 
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using LLMs for semi-automatic test generation, where the 
model, by retaining an understanding of the code struc-
ture, can immediately identify common logical pitfalls.

This approach is particularly relevant for Continuous 
Integration/Continuous Delivery (CI/CD) pipelines. Ac-
cording to X. Hou et al. (2024), an LLM integrated into CI/
CD workflows can validate key functional components with 
each new commit, referencing the history of successful and 
failed results to enhance software reliability. In turn, S. Jal-
il (2023) highlighted that such automated scenarios are be-
coming increasingly important in complex projects char-
acterised by a high frequency of changes. The integration 
of memory enables LLMs to retain key contextual informa-
tion and adapt more rapidly to evolving conditions. This 
approach, as emphasised by N. van Viet & N. Vinh (2024), 
forms the foundation for intelligent systems capable of in-
dependently determining development or testing priorities.

Finally, R.  Hoda  et al.  (2023) introduced the concept 
of “Augmented Agile”, in which an LLM with an advanced 
memory mechanism effectively becomes part of the devel-
opment team, assisting in operational decision-making re-
lated to task distribution and code structure. This marks 
a significant shift in software development, reducing the 
burden on engineers by automating routine error detec-
tion and resolution. Overall, the findings from the sec-
ond phase of the study confirmed that optimised memory 
systems substantially enhance the capabilities of LLMs in 
automating software development – from code generation 
and testing to comprehensive refactoring. This opens up 
the prospect of integrating such models into Continuous 
Integration (CI) and Continuous Delivery (CD) pipelines, 
where they could autonomously handle a significant por-
tion of routine tasks, thereby accelerating release cycles 
and reducing the risk of errors.

Comparative analysis and prospects for use. Based 
on the data obtained, several general conclusions can be 
drawn regarding the effectiveness of each of the examined 
approaches and their potential applications in real-world 
conditions. First, all three memory systems – MemoryBank, 
Memformer, and PagedAttention – demonstrated superior 
performance compared to the baseline LLM. According to 
the metrics presented, these systems achieve 30-40% fast-
er data processing and 6-9% higher accuracy, which is par-
ticularly critical for scenarios requiring stable handling of 
large contexts or long-term interaction with users.

Among these systems, PagedAttention exhibited the 
best balance between speed and accuracy. Due to its abil-
ity to dynamically “load” context pages, it achieved the 
lowest latency while maintaining high accuracy (91%). It 
also outperformed other approaches in refactoring tasks, 
as it efficiently analysed complex project structures and 
suggested design patterns. Memformer proved particu-
larly effective in complex, multi-layered scenarios, where 
projects contain multiple levels of logical dependencies 
and large datasets. Its hierarchical model scales effec-
tively while maintaining high accuracy (90%), though its  

implementation is more complex and may be excessive 
for simpler applications. Conversely, MemoryBank is most 
suitable for medium-sized or segmented projects. While 
it lags slightly behind the other two approaches in overall 
performance, it stands out for its ease of implementation 
and flexibility in managing individual data blocks. This 
makes it an ideal choice for small teams or projects requir-
ing rapid deployment without unnecessary complexity.

Comparing MemoryBank, Memformer, and PagedAt-
tention with the baseline LLM, all three memory mecha-
nisms demonstrate significant improvements in perfor-
mance and accuracy, particularly when handling large 
contexts or highly interconnected tasks. However, each 
approach has distinct advantages, making it more suitable 
for specific scenarios. PagedAttention dynamically “loads” 
only the necessary pages of information, optimising ef-
ficiency and reducing processing overhead. Memformer 
scales effectively in complex scenarios involving multiple 
logical dependencies. MemoryBank is easier to implement 
and well-suited for small to medium-sized projects that re-
quire flexible memory management.

It is worth noting that X. Hou et al. (2024) highlighted 
the versatility of long-term memory mechanisms, noting 
that they are beneficial not only for code generation but 
also for adaptive documentation analysis and project his-
tory management. According to S. Jalil (2023), LLMs that 
account for previous changes and specifications serve 
as integrators between different development team de-
partments, facilitating better cross-team collaboration. 
Meanwhile, N.  van Viet & N. Vinh  (2024) observed that 
the scaling and advancement of memory architectures 
has paved the way for self-optimising systems capable of 
monitoring design changes and autonomously suggest-
ing improvements. F. Chalumeau et al. (2024) further de-
scribed how innovative memory methods are particularly 
valuable for addressing combinatorial explosion prob-
lems, where the model must track and manage multiple 
intermediate states simultaneously.

Further efficiency gains are also linked to advance-
ments in hardware solutions. L.A.S.  Julien  et al.  (2023) 
highlighted the emergence of enhanced chips and mem-
ory devices, which have simultaneously reduced power 
consumption and accelerated data processing. J. Cheng et 
al.  (2021) emphasised the importance of efficient memo-
ry allocation in multi-threaded code synthesis environ-
ments, where multiple program segments may need to 
access shared memory areas within the model. According 
to M.  Alenezi & M.  Akour  (2025), these advancements 
offer not only technical but also economic benefits, ena-
bling companies to release updates more quickly and re-
duce long-term maintenance costs. It is also worth noting 
how memory mechanisms facilitate applications beyond 
text-based tasks. M. Zhu et al. (2019) demonstrated that in 
generative image modelling (DM-GAN), dynamic memory 
improves the alignment between textual descriptions and 
visual outputs. By analogy, in software engineering, simi-
lar concepts enable the integration of diverse data types, 
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including code fragments, UML diagrams, and technical 
documentation, thereby enhancing project coherence and 
facilitating multi-modal processing.

Additionally, J.  Cruz-Benito  et al.  (2019) observed 
that extended memory mechanisms significantly enhance 
the accuracy of code autocompletion. When a model can 
reference the global structure of a project, the number of 
logical errors and incorrect recommendations is substan-
tially reduced. Concluding the review, Z. Lyu et al. (2025) 
introduced the Top Pass technique, which combines rank-
ing of the best results with a memory mechanism. This 
approach enables the model to rapidly filter potential an-
swers, discarding the least relevant options and refining 
its outputs more effectively.

Thus, the prospects for integrating innovative memory 
systems into LLMs are extensive, ranging from enhancing 
productivity and accuracy to improving integration with-
in development workflows. By retaining and adaptively 
managing context, these models become more flexible and 
versatile, enabling them to handle increasingly complex 
tasks in dynamic and continuously evolving environments. 
The findings of this study confirm that innovative memory 
systems significantly enhance both the performance and 
flexibility of large language models. With improved long-
term context management, LLMs are evolving into power-
ful tools for automating software development, capable of 
independently generating code, testing it, and suggesting 
optimisations. Among the tested approaches, PagedAtten-
tion delivered the best overall performance, though the 
choice of a specific memory mechanism depends on fac-
tors such as project scale, complexity, speed requirements, 
memory constraints, and ease of implementation. Looking 
ahead, these technologies are poised to become industry 
standards, fostering more effective collaboration between 
humans and AI and laying the groundwork for further in-
novations in software engineering.

Conclusions
The findings of this study confirmed the high efficiency 
of innovative memory management approaches in LLMs, 
particularly MemoryBank, Memformer, and PagedAtten-
tion. Each of these mechanisms significantly enhanced 
model performance and accuracy, which is especially crit-
ical for tasks requiring long-term context retention and 

handling a large number of interconnected actions. The 
implementation of MemoryBank improved long-term con-
text processing through its efficient hierarchical memory 
structure, leading to reduced latency and greater accuracy 
in complex tasks. Memformer demonstrated high effective-
ness in scenarios involving complex dependencies between 
tokens, enabling deeper context analysis and more precise 
generation. PagedAttention, in turn, outperformed other 
approaches in key metrics, achieving the highest data pro-
cessing speed and optimal memory usage by dynamically 
loading only relevant data.

In the domain of software development automation, 
the study highlighted the potential of LLMs in executing 
a broad spectrum of tasks, from code generation and test 
script creation to refactoring existing software modules. 
The integration of advanced memory mechanisms signif-
icantly reduced development time while improving code 
quality, minimising both logical and syntactic errors. The 
use of PagedAttention in CI/CD processes proved particu-
larly promising, as its dynamic context management opti-
mised the code testing and verification pipeline.

Overall, the study confirmed that enhancing memory 
systems not only improves the performance and accuracy 
of large language models but also expands their potential 
applications. Further research in this field could explore 
the integration of LLMs into multi-component systems 
that support decision-making across various sectors, from 
medicine to financial analytics. In particular, advance-
ments in technologies similar to PagedAttention could 
lay the foundation for new solutions prioritising scalabil-
ity, adaptability, and efficiency. Innovative memory man-
agement approaches have the potential to become the de 
facto industry standard, enabling fast, precise, and effi-
cient problem-solving across a wide range of complexities. 
These developments could fundamentally reshape the way 
data is processed and software is developed, unlocking new 
opportunities for automation, personalisation, and seam-
less integration into existing workflows.
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Оптимізація продуктивності та автоматизація
розробки програмного забезпечення: інноваційні підходи 
до системи пам’яті у великих мовних моделях

Олена Сокол
Магістр
Київський національний університет імені Тараса Шевченка
01601, вул. Володимирська, 60, м. Київ, Україна
https://orcid.org/0009-0005-5160-460X

Анотація. Це дослідження розглядало інноваційні підходи до вдосконалення систем пам’яті у великих мовних 
моделях для підвищення ефективності та автоматизації розробки програмного забезпечення. Основна увага 
приділялася оптимізації систем пам’яті, які забезпечують довготривале зберігання контексту та полегшують 
адаптацію моделі до мінливих умов взаємодії. У дослідженні проаналізовано сучасні методи зберігання та 
обробки даних, які підвищують здатність моделей ефективно обробляти великі обсяги інформації. Це включало 
використання спеціалізованих алгоритмів і механізмів пам’яті, які підвищують точність і адаптивність 
великих мовних моделей при виконанні складних завдань. Другим напрямком дослідження було вивчення 
можливостей великих мовних моделей в автоматизації розробки програмного забезпечення. Оцінювалося, як 
ці моделі можуть генерувати код, оптимізувати його та виявляти помилки. Особливу увагу приділено аналізу 
впливу автоматизації на якість програмного забезпечення та час розробки. У цьому контексті дослідження 
вивчало використання моделей великих мов для автоматизації повторюваних завдань, генерації тестів та 
впровадження найкращих практик програмування. Отримані результати свідчили про те, що покращення систем 
пам’яті великих мовних моделей значно підвищує їхню ефективність у задачах, що потребують довготривалої 
взаємодії. Показано, що інтеграція таких моделей у процеси розробки програмного забезпечення дозволяє 
скоротити витрати часу та ресурсів при одночасному підвищенні якості продукту. Практична значущість цього 
дослідження полягає у формулюванні рекомендацій щодо оптимального використання моделей великих мов 
у сфері інформаційних технологій

Ключові слова: контекстна обробка; оптимізація алгоритмів; генерація коду; інтелектуальні агенти; обробка 
великих даних; автоматизація; моделювання взаємодії

https://doi.org/10.48550/arXiv.2010.06891
https://doi.org/10.48550/arXiv.2010.06891
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1007/s10664-024-10602-0
https://doi.org/10.1609/aaai.v38i17.29946
file:///D:/%d0%a2%d0%b5%d1%85%d0%bd%d0%be%d0%bb%d0%be%d0%b3%d1%96%d1%97%20%d1%82%d0%b0%20%d1%96%d0%bd%d0%b6%d0%b8%d0%bd%d1%96%d1%80%d0%b8%d0%bd%d0%b3/%d0%a2%d0%86_26_1_2025/%5b1%5d%09https:/openaccess.thecvf.com/content_CVPR_2019/papers/Zhu_DM-GAN_Dynamic_Memory_Generative_Adversarial_Networks_for_Text-To-Image_Synthesis_CVPR_2019_paper.pdf.
file:///D:/%d0%a2%d0%b5%d1%85%d0%bd%d0%be%d0%bb%d0%be%d0%b3%d1%96%d1%97%20%d1%82%d0%b0%20%d1%96%d0%bd%d0%b6%d0%b8%d0%bd%d1%96%d1%80%d0%b8%d0%bd%d0%b3/%d0%a2%d0%86_26_1_2025/%5b1%5d%09https:/openaccess.thecvf.com/content_CVPR_2019/papers/Zhu_DM-GAN_Dynamic_Memory_Generative_Adversarial_Networks_for_Text-To-Image_Synthesis_CVPR_2019_paper.pdf.
https://orcid.org/0009-0005-5160-460X

