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Abstract. The purpose of the study was to investigate the effect of automatic testing log file preprocessing on the
speed of vectorisation and training of machine learning models. The HDFS v3 TraceBench set was used, which contains
more than 370 thousand traces collected in the Hadoop Distributed File System Environment. Processing included noise
removal, lemmatisation, and duplication reduction. The data was vectorised using the Term frequency — inverse document
frequency method, and then the RandomForestClassifier model was trained. The experimental results showed that
optimising the input data reduced the total processing time by almost five times. The time required for text vectorisation
and model training has been reduced, which helped to speed up work with large volumes of logs. However, the classification
accuracy was not only preserved, but also showed a slight improvement: the F1-score and Matthews correlation coefficient
indicators remained consistently high. There was also a decrease in the Log Loss value, which indicated an increase in
the model’s confidence in its own forecasts. This is especially important in the context of unbalanced classes that are
characteristic of defect classification problems. A detailed analysis showed that a significant part of the service and
repetitive information in the logs is not critical for training the model, and its removal, on the contrary, improves the
quality of data preparation. In the course of the study, it was also confirmed that the resulting target labels for logs
correspond to typical error classes. Implemented log file processing not only reduces computational costs, but also
supports or improves the quality of forecasting. These results confirmed the feasibility of including the log cleaning and
optimisation step in the overall process of building machine learning models for automated testing. The results obtained
can be integrated into automated pipelines for classifying defects and generating bug reports. This will help to reduce the
amount of manual labour and increase the efficiency of teams
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Introduction

Automated testing of the latest software generates large
volumes of unstructured log files, which are complicated
by the growing number of tests and the complexity of sys-
tems. According to R. Peronto (2024), the annual growth
in the volume of log files is 250%. Traditional log analysis
methods are expensive and slow, which leads to delays in
detecting defects and releasing software. Machine learn-
ing allows automating this process, but the effectiveness
of models largely depends on the quality of preprocessing:
redundant information slows down learning, and excessive
filtering reduces accuracy. The balance between these ex-
tremes determines the performance of the system, espe-
cially in problems of classification of defect types, where it

is important not only to identify the problem, but also to
understand its nature.

Recent international studies have mainly focused
on detecting anomalies in logs. R.R. Abdalla & A.K. Ju-
maa (2022) in their study showed the effectiveness of ML
(Machine Learning) when working with unstructured jour-
nals, but the classification of known defects was not con-
sidered. S. Ramachandran et al. (2023) proposed a model
based on deep neural networks and custom “LogWord-
2Vec” vectorisation for classifying errors in large log files,
achieving high accuracy, although the impact of preproc-
essing on resource consumption was ignored. Log vectori-
sation is a key step in preparing for analysis. TF-IDF (Term
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frequency - inverse document frequency) remains one of
the most common approaches for highlighting informa-
tive words. A. Sandhu & S. Mohammed (2022) noted that
frequently repeated terms reduce the quality of features,
so limiting the number of duplicates helps reduce their
impact while maintaining the semantic load of messages.
In application systems, log analytics is increasingly used
to detect states or types of errors. A. Brandao & P. Geor-
gieva (2020) was one of the first to apply ML to network
logs to detect attacks. P. Ryciak et al. (2022) adapted this
approach to search for anomalies in system logs using se-
quential models. E. Shirzad & H. Saadatfar (2022) showed
that analysis of patterns in unstructured logs allows pre-
dicting failures in a Hadoop cluster, which increases the
reliability of the system. Y. Huangfu (2022) investigated
the use of various machine learning approaches to diag-
nose log-based software failures, emphasising the impor-
tance of data preprocessing to improve model efficiency.
Q. Qin et al. (2024) proposed a two-step approach to log
file processing, using semi-supervised learning to speed
up log classification in large online systems. Z.A. Khan et
al. (2024) conducted an empirical study of the effect of log
parsing on the accuracy of anomaly detection, emphasis-
ing that the distinguishing property in parsing results is
key to achieving high accuracy. The problem of preproc-
essing log files was also actively investigated by Ukrainian
researchers. In particular, M. Prodeus et al. (2024) proved
that standardisation, normalisation, and feature selection
significantly improve Random Forest results in network
data anomaly detection problems. Despite the differenc-
es in domains, this confirmed the importance of filtering
unnecessary technical information in logs to improve the
efficiency of models. S. Kapitanets & G. Radelchuk (2022)
emphasised the importance of orderly data logging for
timely detection of failures in software systems, noting
that chaotic logging practices significantly complicate er-
ror detection. O. Khil & V. Yakovina (2023) emphasised in
their study that the success of the model largely depends
on the quality of input data. The study by S.A. Hussein &
S.R.Répas (2024) provided an overview of modern methods
for detecting anomalies in log files using machine learning
algorithms. The researchers analysed the effectiveness of
statistical, ML, and DL approaches in the context of vari-
able structure and large amounts of log data, highlighting
the growing role of Al in strengthening cybersecurity.

The purpose of this study was to investigate the in-
fluence of log file preprocessing methods on the efficiency
of machine learning in automatic defect classification. In
particular, it was considered how noise removal using reg-
ular expressions, lemmatisation, and TF-IDF vectorisation
affects the speed of converting text data to numeric vectors
and model training.

Materials and Methods

To achieve this goal, a set of methods of scientific cogni-
tion was applied, including empirical and experimental
approaches. In particular, a computational experiment was

conducted: a data processing and analysis pipeline was im-
plemented, on which various scenarios for preprocessing
log files were tested. The methods of cluster analysis (for
preliminary detection of structures in data) and comput-
er experiment were used to evaluate the performance of
text data preprocessing, the learning time of the machine
learning model, and the accuracy of model prediction. The
results of various data preparation methods were com-
pared with each other (comparative analysis method) to
identify their impact on speed and accuracy. This approach
allows drawing reasonable conclusions about the causal re-
lationships between the applied data transformations and
the obtained ML model metrics.

The open dataset HDFS v3 (TraceBench), a collection
of log files obtained in the Hadoop distributed file system
(HDES) during cluster operation (Zhou et al., 2014). This
set contains more than 370,000 trace records (log messag-
es) from the real infrastructure-as-a-service (IaaS) envi-
ronment. Below is the programme code for calculating the
silhouette score based on a data set:

import matplotlib.cm as cm

import matplotlib.pyplot as plt

import numpy as np

from sklearn.metrics import silhouette_samples, silhouette_score
from sklearn.mixture import GaussianMixture

X=X.toarray()
range_n_clusters=[3,4, 5, 6]

fig, axes = plt.subplots(2, 2, figsize =(15, 10))
axes = axes.flatten()

for idx, n_clusters in enumerate(range_n_clusters):
gmm = GaussianMixture(n_components = n_clusters, random_
state=42)
cluster_labels=gmm.fit_predict(X)

# Calculate avg silhouette coefficient
silhouette_avg=silhouette_score(X, cluster_labels)
print(
f’n_clusters = {n_clusters}, average silhouette
coefficient = {silhouette_avg:.4f}”

)

# Calculate silhouette coefficient for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)

y_lower=10
ax=axes[idx]
ax.set_title(
f’Number of clusters: {n_clustersf\nAverage silhouette
coefficient: {silhouette_avg:.4f}”

ax.set_xlabel(“Silhouette coefficient”)
ax.set_ylabel(“Cluster”)

ax.set_xlim([-0.1, 1])
ax.set_ylim([0, len(X) + (n_clusters + 1) * 10])
ax.axvline(x=silhouette_avg, color="red”, linestyle="--")

for i in range(n_clusters):
ith_cluster_silhouette values = sample_silhouette
values[cluster_labels==i]
ith_cluster_silhouette_values.sort()
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size_cluster_i=ith_cluster_silhouette_values.shape[0]
y_upper=y_lower +size_cluster _i

color=cm.nipy_spectral(float(i) / n_clusters)
ax.fill_betweenx(
np.arange(y_lower, y_upper),
ith_cluster_silhouette _values,
facecolor = color,
edgecolor =color,
alpha=0.7,
)

ax.text(-0.05,y_lower+0.5 * size_cluster i, str(i))
y_lower=y _upper+10 # 10 for space between clusters

ax.set_yticks([]) # Hide sticks for Y axis
ax.set_xticks(np.arange(-0.1, 1.1,0.2))

plt.tight_layout()
plt.show()

Since the purpose of the study was to train the ML mod-
el to classify defect types, and the HDFS v3 TraceBench
dataset contains only log files without corresponding

labels, the first step was to create target classes (labels) for
each log file. The first step was to read the log files and
create a pandas.DataFrame structure with error messages;
next, the data were vectorised using the TF-IDF method
and clustered using Gaussian mixture; the optimal num-
ber of clusters was determined using the silhouette score,
according to A. Géron (2022), and creating a pandas.Data-
Frame with target classes for further model training. Ulti-
mately, the obtained clusters were analysed and compared
with the types of defects given in the official documenta-
tion according to the HDFS architecture guide (n.d.).

The next step was data preprocessing. Problems
identified in logs: unstructured, redundant information
and noise. To solve these problems, the following pre-
treatment steps were implemented (Fig. 1): using regular
expressions, timestamps, logging levels (INFO, DEBUG,
ERROR, WARN), ID (Identification Number), IP address-
es, UUID (Universal Unique Identifier) and extra special
characters were removed; words were returned to their
original form to improve the quality of vectorisation and
data consistency; the number of duplicate messages was
reduced to reduce the amount of data.

( BEGIN |

Read log files in DataFrame with columns
TEST RUN ID, FULL LOG

For each line in DataFrame [FULL_LOG]

Take text from cell
FULL_LOG

Split into lines

Remove noise
(timestamps, IP, technical information...)

Lemmatisation
(WordNetLemmatizer)

Limit the number of
duplicate lines

Save the processed result
in DataFrame

Vectorise text (TfldVectorizer)

END

Figure 1. Block diagram of log file preprocessing

Source: developed by the author based on research

After preprocessing the data, the TF-IDF (Term fre-
quency - inverse document frequency) method was used
to vectorise the text, implemented using the TfidfVec-
torizer library from the scikit-learn package, according
to the TfidfVectorizer (n.d.). This method was widely
used for processing text data, as it allows determining

the weight of each word based on its frequency in the
document and rarity throughout the corpus, according
to G. Salton et al. (1975). TE-IDF helps to reduce the im-
pact of noisy or overly frequent words by highlighting
key terms that are unique or relevant to specific mes-
sages or errors.
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Equation for calculating TF:

__ Number of times the term t appears in the document d
TF(t' d) - Total number of terms in the document d ’ (1)
where TF - frequency of the term, t — the term being an-
alysed, d — the document for which the analysis is being
performed.

Equation for calculating IDF:

Total number of documents in the corpus D (2)
Number of documents including the term ¢’

IDF(t,D) =

where IDF - inverse frequency of documents, t - the term
being analysed, D - entire body of documents.
Equation for calculating TF-IDF:

TF-IDF(t, d, D)=TF(t, d) x IDE(t, D), 3

where TF-IDF - combined metric that considers the
frequency of the term in the document and its rarity
throughout the body, t — the term being analysed, d — the
document for which the analysis is performed, D - entire
body of documents, TF - term frequency, IDF - inverted
document frequency.

To implement this pipeline, the Pipeline interface was
used, which inherits the BaseEstimator classes (BaseEsti-
mator section in scikit-learn official documentation, n.d.)
and TransformerMixin (TransformerMixin, n.d.), according
to Developing scikit-learn estimators (n.d.):

import re

from typing import Union, Optional

from sklearn.base import BaseEstimator, TransformerMixin
from nltk.stem import WordNetLemmatizer

class RegexpCleaner(BaseEstimator, TransformerMixin):
“””Removes substrings for the given patterns.”””

def _init_ (self, patterns: Union[str, list[str]]) ->None:
“””Initialize with a single pattern, or list of patterns to
remove.

:param patterns: e.g. r’[*a-zA-Z\s], [r'[*a-zA-Z\s]’, ...]
self.patterns: list[str] = [patterns] if isinstance(patterns, str)
else patterns

def fit(self, X: list[str], y:
Optional[list] =None) -> “RegexpCleaner”:
“””Dummy function to follow the interface of a

transformer.
return self

def transform(self, X: list[str], y: Optional[list] =None) ->
list[str]:
“””For each line in X remove given pattern one by one.

:param X: dataset to transform
:param y: added to implement interface.
:return: transformed dataset
cleaned: list[str]=[]
for text in X:
for pattern in self.patterns:
text =re.sub(pattern, “”, text)

cleaned.append(text)
return cleaned

class Lemmatizer(BaseEstimator, TransformerMixin):
“””Lemmatizes data in a given dataset™””

def _init_ (self)->None:
self.lemmatizer = WordNetLemmatizer()

def fit(self, X: list[str], y: Optional[list]=None)-> “Lemmatizer”:
“*”Dummy function to follow the interface of a

transformer.
return self

def transform(self, X: list[str], y:
Optional[list] = None) -> list[str]:

w“n»

Lemmatize the lines in the given dataset.
lemmatized: list[str] =[]
for text in X:
words = text.split()
lemmatized_words = [self.lemmatizer.lemmatize(word) for
word in words]
lemmatized.append(
return lemmatized

“« «

.join(lemmatized_words))

class DuplicateLimiter(BaseEstimator, TransformerMixin):
“””Limits number of duplicates in a given dataset”””

def _init_(self, max_dupes: int=>5)->None:
“»”Initialize with a number of duplicates to leave

:param max_dupes: number of duplicates to leave
:raises ValueError: if max_dupes has an incorrect type
if not isinstance(max_dupes, int):
raise ValueError(f”max_dupes should be integer,
{type(max_dupes)} was given.”)
self.max_dupes=max_dupes

def fit(self, X: list[str], y:
Optional[list] = None) -> “DuplicateLimiter”:
“’”Dummy function to follow the interface of a
transformer.”””
return self

def transform(self, X: list[str], y: Optional[list]=None) ->list[str]:
“”?Limit the duplicates in a dataset

:param X: dataset to transform

:param y: added to implement interface.

:return: transformed dataset

line_counts={}

result=[]

for line in X:
line_counts[line]=line_counts.get(line, 0)+ 1
if line_counts[line] < =self.max_dupes:

result.append(line)
return result

Such a pipeline for data preprocessing has a concise
structure and can be easily expanded if necessary:

from sklearn.pipeline import Pipeline

ID_PATTERN = r'\b[A-F0-9]{16},
SPECIAL CHAR PATTERN = r”[*a-zA-Z\s]”
MULTIPLE_ WHITESPACES PATTERN = r"\s+”

pipeline = Pipeline(|
(‘regex_cleaner’, RegexpCleaner(patterns=[ID_PATTERN,
SPECIAL_CHAR_PATTERN, MULTIPLE_ WHITESPACES _
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PATTERNY))),
(‘lemmatizer’, Lemmatizer()),
(‘dup_limiter’, DuplicateLimiter(max_dupes = 5)),

D

X_preprocessed = pipeline.fit_transform(X)

The last step was to select the model and metrics for
evaluation. The RandomForestClassifier algorithm, which
is an ensemble machine learning method known for its
high accuracy and resistance to retraining in classification

problems, was chosen to classify defect types. Previous
studies confirm its effectiveness under similar conditions,
according to M. Prodeus et al. (2024). Three metrics were
used to evaluate the model quality: Log Loss, F1-score,
and MCC (Table 1). Each of them measures different as-
pects of the algorithm’s performance, which is especially
important for working with unbalanced classes that are
often found when classifying defects in log files, accord-
ing to C. Cao et al. (2020).

Table 1. Metrics for evaluating the model

Metric What it measures Why it is used

Log Loss How confident is the model in its predictions Considers the probability of predictions

F1-score Balance precision and recall Important for unbalanced classes
MCC General correlation of predictions with real classes Best metric for unbalanced data

Source: developed by the author based on C. Cao et al. (2020)

The use of these metrics allows getting a compre-
hensive understanding of the quality of the classification
model, ensuring the reliability and efficiency of automated
analysis of defects in log files.

In this context, the programme code that was used to
create and train the model is presented:

X train, X_test, y train, y test = train_test_split(X_,y, test_
size = 0.7, random_state = 42, stratify =y)

rf clf = RandomForestClassifier(random_state =42, n_
estimators = 100)

start_time_train = time.time()

rf clf.fit(X_train, y _train)

train_time = time.time() - start_time_train

y_pred = rf_clf.predict(X_test)
predict_proba = rf clf.predict_proba(X test)

log loss_=log loss(y_test, predict_proba)

f1 =f1_score(y_test, y_pred, average="weighted”)

matthews = matthews_corrcoef(y_test,y pred)

print(f”log loss: {log loss_:.4f}, f1: {f1}, matthews: {matthews]},
train_time: {train_time}”)

Results and Discussion

This section presents the results of an experimental study
and their analysis. First, the obtained cluster structures and
the formation of defect classes were considered, followed by
the effect of pre-processing on the learning rate and model
accuracy. In the end, a comparison is made with the latest
developments of other researchers in the field of log file
analysis. This approach ensured the integrity of the pres-
entation and allowed interpreting the results qualitatively.

The obtained cluster analysis data confirmed the pres-
ence of five groups (clusters) in the data sample. The values
of the silhouette coefficient for a different number of clus-
ters were: for 3 clusters — 0.3758 (unsatisfactory separa-
tion); 4 — 0.4770 (improvement, but still weak); 5 - 0.5471
(optimal balance of cohesion and separation); 6 — 0.6088
(higher result, but there is an appearance of overtraining
and blurring of borders between some clusters). Thus, the
choice of 5 clusters as the optimal option for constructing

classification labels is justified. Figure 2 showed the results
of the silhouette coefficient analysis for a different number
of clusters, confirming the above values.

2
N Y

3

T
- 1

T T l- T T

01 03 05 07 09

1
0
.1

01 01 03 05 07 09 11 -0 11

Figure 2. Silhouette factor analysis based
on the number of clusters
Source: developed by the author based on research

Figure 3 showed the result of clustering using an un-
controlled Gaussian Mixture Model. For clarity, the data
dimension was reduced to two main components using the
PCA (Principal component analysis) method, which allows
mapping clusters in two-dimensional space.

‘Principal component 2 ‘

‘ Principal component 1

Figure 3. Visualisation of clusters obtained
during the previous step
Source: developed by the author based on research
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The resulting clusters look clearly separated, which in-
dicates a successful choice of model parameters. The result
corresponds to the previous silhouette analysis, according
to which the optimal number of clusters is 5-6. In this case,
the model also formed 5 clusters, which confirms the con-
sistency between different analysis methods.

Next, a dataset was generated with labels (target val-
ues) for each log file from the dataset. Figure 4 showed the
distribution of the sample by five classes of defects (codes
0-4) detected during automated testing. The X-axis shows
the codes of defect classes, and the Y-axis shows the num-
ber of samples in each class. According to the HDFS ar-
chitecture guide (n.d.), the resulting uneven distribution
corresponds to the types of defects that were removed as
part of the use of the system under study. It displays the
actual types of failures, which include: data disk failure,
heartbeats and re-replication, cluster rebalancing, data in-
tegrity, and metadata disk failure.

The distribution between classes was uneven, which
indicates a more frequent occurrence of certain types of de-
fects. In particular, class 0 (red) contains the largest num-
ber of samples, while classes 2 (purple) and 4 (pink) con-
tain the least. This imbalance is typical for large distributed

systems and affects further training of models, because
models can lean towards the dominant class.

v
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=
g
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Defect classes

Figure 4. Distribution of the sample by five classes of defects
Source: developed by the author based on research

To illustrate the input data, Figure 5 showed a fragment
of araw log file from the HDFS_v3_TraceBench dataset. The
file contains a significant amount of noise and duplicate
service records. This format is typical for log files generated
by software systems or automated tests, and confirms the
presence of unstructured, redundant information in logs.

BOTGEGS16B275ABB | E4F8152FBOFO6805  getFieinio 4119548017230538 4113543017995575 10.107.100.57  namancde  Namarode

BOTOEGS16B275ABB | D7FIG0AOAFIS56A0  RPC gotFilsinto 4113085176787665 4113085184877160 10.107.100.135 clenti24  RPC Clent

BO7BESS16B27SABB | S26C20ADFOAMINF  getFieinto 4119548020848716 4119548000243538 10.107.100.67 namencde  Namenode

m‘miﬂ”lwﬁ!m RPC gotF iinto 4113085190448806  4112085192061060 10.107.100.135 clenti24é RPC Chent

BOTOEGS16B27SABB | EC24619C027914A1  getFikeinto 4119648042473074 4119548042701240 10.107.100.57 namancde  Namonode

BOTOESSICB2TSABE | DIFIOACAFISSEAD | RPCgetfieinto 4113085203163602 4113085204571562 10.107.100.135 clenti24  RPC Client

BOT6E65168275AB8 | 122C5157858F80CH  gorFieinio 4119548043862356 4119548044102628 10.107.100.57 namancde  Namenode

BOBEGS16B27SABS | DIFISOACAFISSEA)  RPC getFisinto 4113085204730625 4113085205815634 | 10.107.100.135 clent02¢  RPC Chent
| getBlockLocatons 4119548047519232 4119548028701722 10.107.100.57 mamencde  Namenode

Success: 3 -

Succens: reun@OW

Succens

Success o o P tes s

Succens: reunOW

Succens pomocol D

Success promcol

Success: chosen bestode = 10107, 100.96.500%0 in sodes = 10.107.100.96:40010 10.107.102.86.30010 10.107.100.82:40010

Figure 5. Log file data format from the HDFS v3_TraceBench dataset

Source: J. Zhu et al. (2013)

The comparative analysis performed showed a clear
advantage of the model trained on cleared logs over the op-
tion without preprocessing. First, the volume and structure
of input data changed significantly: deleting duplicate and
service records reduced the volume of log files by almost
80%, reducing the dimension of the feature space. Optimis-
ing the input data significantly reduced the training time of
the model, as shown in Figure 6. The first column showed
the time spent on training (red), and the second column
showed the time spent on preprocessing (blue) and train-
ing. The results showed that although data preprocessing
takes time, the total time spent processing data and train-
ing the model is almost five times less compared to training
the model on raw data. In particular, the conversion of log
files to TF-IDF vectors and further training of the model on
cleaned data was much faster than on raw data. This is im-
portant from the standpoint of scaling, because it helps to

speed up the analysis of large volumes of log files without
additional resources. In addition, the preprocessing process
can take place separately from vectorisation and training,
to save resources or save disk space spent on storing logs.

‘ Processed data ‘

Raw data ‘

Figure 6. Impact of data quality on time spent
on vectorisation
Source: developed by the author based on research
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The simulation results showed that pretreatment of
data contributed not only to the preservation, but also to
the improvement of classification accuracy. Figure 7 com-
pared the performance of the model trained on cleaned
data with the model built on raw input data. There was
a moderate increase in the values of the F1 measure and
the Matthews correlation coefficient (MCC) after cleaning,
which indicated a decrease in noise levels and the pres-
ervation of key informative features. A slight increase in
the value of the Log Loss metric did not significantly af-
fect the overall quality of classification, which indicates
that the model remains confident in its forecasts. Thus, the
model trained on cleared logs demonstrated both acceler-
ation and high stability of accuracy metrics. Consequently,
high-quality preprocessing of logs provided simultaneous
acceleration of work and increased reliability of the mod-
el, which is a significant advantage from the standpoint of
practical application in defect analysis.

—e— F1Score
008 - LogLoss
-= Matthews Score 10

o
=
g
=
=
[
Q
O

‘Model training time ‘

Raw data

Processed data

Figure 7. Influence of data quality on model accuracy
Source: developed by the author based on research

The results obtained in the framework of this study
are consistent with the conclusions of modern works in
the field of analysis of system journals. In particular, M. Al-
jabri et al. (2022) successfully applied Machine Learning
and Deep Learning algorithms to classify network firewall
records, achieving very high accuracy (more than 99% for
Random Forest). This is consistent with the current study,
where the Random Forest model also showed consistently
high performance on cleaned data. This coincidence of re-
sults indicates the universality of the chosen approach to
log classification, even if the data nature is different. Similar
results were observed in the study by V. Koval et al. (2022),
where the Random Forest Regression model was used to
predict the quality of electricity in systems with renew-
able sources. Despite the different scope of application,
the model demonstrated high stability and accuracy when
working with a large array of synchronised data. This con-
firms the flexibility and reliability of Random Forest in tasks
that require processing complex structured logs, and rein-
forces the argument for the universality of this approach
in classification and forecasting problems. Other research-
ers have also emphasised the importance of effective pre-
processing of journals. Thus, ]J. Wang et al. (2020) proposed

a LogEvent2Vec model that directly feeds log events to the
input of a word2vec network for vectorisation. This helped
to avoid multi-level transformations and speed up data
analysis by about 30 times, while improving the accuracy
of anomaly detection. Although the TF-IDF approach pre-
sented in this paper is simpler, it also provided approxi-
mately five-fold acceleration, which confirms the general
trend: optimising the log representation significantly af-
fects the performance of models and allows adapting the
analysis to limited computing resources. S.A. Hussein &
S.R. Répas (2024) noted the advantages of semantic fea-
tures (based on word2vec) over purely statistical features
(TE-IDF) for anomaly recognition tasks in system logs.
However, using the word2vec technique itself requires sig-
nificant computational resources and careful dictionary
construction. In the case of the current study, even the use
of a relatively simple TF-IDF proved effective due to pre-
liminary clearing of logs, which reduced noise and high-
lighted meaningful terms, which allowed compensating for
the lack of a deeper semantic context. Moreover, the results
obtained are consistent with the findings of Z.A. Khan et
al. (2024), who showed that it is not so much the absolute
accuracy of log parsing as the ability to distinguish inform-
ative characteristics (“distinctiveness”) that determines
the success of models. In this context, the experiment of
the current study was aimed precisely at improving the se-
lection of features through data cleaning, which ultimate-
ly allowed improving both the speed and accuracy of the
model without complicating the architecture. Thus, the
comparison confirmed the hypothesis that high-quality
preprocessing of log files is a key factor in both speeding
up calculations and improving the accuracy of defect pre-
diction, which is consistent with trends in current research.
U. Meteriz et al. (2020) presented a log classification sys-
tem for telecom systems using a deep neural network. The
researchers noted the success of advanced NLP (Natural
Language Processing) for logs, which opens up prospects
for automated analysis of complex technical messages. The
results of the current study are consistent with their clas-
sification accuracy, although the approach used in the cur-
rent study (TF-IDF + RandomForest) is significantly simpler
and resource-saving compared to the deep CNN (Convo-
lutional Neural Network) model. The effectiveness of data
cleaning was also confirmed by the findings of O. John-
phill et al. (2024), according to which removing uninforma-
tive records and duplicate messages allows the model to fo-
cus on relevant signals, which increases learning efficiency.
D.A. Bhanage & A.V. Pawar (2023) presented an approach
to classifying system logs as natural language texts. The
researchers tested a combination of several vectorisation
techniques — TF-IDF, Word2Vec, and tonality analysis (po-
larity) — in combination with classical classifiers. According
to the results, the most promising approach was to con-
sider the “tone” of messages, which improved the recogni-
tion of complex irregular logs. D.A. Bhanage & A.V. Pawar’s
approach demonstrated that additional semantic features
(such as sentiment) can improve the quality of log analysis.
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The method used in this study, on the contrary, is deliber-
ately simplified (only TF-IDF without deep semantic anal-
ysis), which makes it less resource-intensive, although it is
somewhat inferior in terms of contextual nuances. P. Marjai
& A. Kiss (2024) pointed out in their paper that pre-struc-
turing logs helps the model to better generalise error mes-
sages. The results obtained in the current study confirmed
this trend: cleaning and normalising text data from log files
helps to improve classification accuracy even without com-
plicating the vectorisation approach. This is especially im-
portant in application environments where resources are
limited and data processing speed requirements are critical.

The results showed that the quality and volume of log
data have a complex relationship with the performance of
machine learning models. In contrast to the common prac-
tice of accumulating and storing complete logs, the con-
ducted experiment indicates the possibility of significantly
reducing the amount of input information without nega-
tively affecting the accuracy of classification. In particular,
the removal of service records, repetitions, and technical
labels helped not only to reduce processing time, but also
to achieve better classification quality by key metrics. This
effect can be explained by a decrease in the influence of
information noise, which usually overloads the model and
reduces its ability to distinguish relevant patterns in logs.
The presence of a regular structure in messages after lem-
matisation and cleaning can also help improve the vector-
isation process, especially when using methods such as
TF-IDF. However, the results indicate the potential adapt-
ability of the proposed approach to other logging systems.

Conclusions

In the course of the study, it was found that log file pre-
processing, which includes noise removal, lematisation,
and limiting message duplication, significantly improves
the efficiency of building machine learning models for de-
fect classification. In particular, it has been shown that the
use of regular expressions reduces the amount of unneces-
sary technical information, such as timestamps, identifiers,
and log levels, which simplifies the structure of messages
and facilitates further vectoring.

It has been proven that preprocessing reduces the time
required for vectorisation and model training by almost five
times without losing accuracy. The accuracy of the model
is not only preserved, but also improved: an increase in the
F1-score and Matthews correlation coefficient (MCC) was
recorded, which indicates an improvement in the quality
of classification even in the presence of unbalanced class-
es. In addition, it was found that the use of TF-IDF can

effectively emphasise meaningful words of diagnostic val-
ue, while suppressing repetitive terms. This has a positive
effect on the model’s noise resistance. It was also confirmed
that the Log Loss value was decreasing, which indicates an
increase in the model’s confidence in its forecasts.

In the course of the study, a number of logically con-
sistent and effective actions were identified that can be
combined into a single pipeline for automatic processing
of log files. Such a pipeline can be integrated into auto-
mated testing systems without significant losses for train-
ing the model, due to the effective allocation of the nec-
essary information. This reduces the burden on analysts,
ensures high classification accuracy, and reduces the time
required to process large amounts of log data. It is impor-
tant to note that the proposed approach does not depend
on the use of complex or resource-intensive models and
can be applied in real-world conditions without the need
for high-performance equipment.

Thus, the results of the study confirmed the hypothesis
that high-quality preprocessing of log files is a key factor in
both speeding up calculations and improving the accuracy
of models. The proposed approach can be successfully inte-
grated into automated testing pipelines, helping to improve
the efficiency of detecting and classifying software defects.
In addition to its direct application value, the study high-
lights the potential of using simple word processing tools
to solve complex software testing problems. Although the
study was limited to one data set and one model type, the
results provide prerequisites for further study of the meth-
od’s stability to different domains and model architecture
variants. The question of the extent to which other sources
of information (e.g., contextual metadata) can influence
the results of defect classification in logs remains relevant.
In this context, the proposed solution is considered as a ba-
sis for future research.
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BnamB o6po6ku nor-doamniB HA LUBNAOKICTb HOBYOHHSA
Td TOUHICTb KnacudoikaLii pedoekTiB

AHTOH Kasidrok

AcmipaHT

KuiBcbKkuit HalliOHAJIbHMUI YHIBEPCUTET TEXHOJIOTIN Ta AU3aiiHy
01011, Byn. Masna lllussHoBChKa, 2, M. Kuis, YkpaiHna
https://orcid.org/0009-0003-9917-0834

AHoOTAUifA. MeToio 6y/10 AOCTIAUTY BIUIMB MoONepenHboi 06po6Ku Jior-haiiiiB aBTOMaT30BaHOr0 TECTYBaHHS Ha
IIBUIIKICTh BEKTOPM3allii Ta HABUaHHS MOJeJieii MalllMHHOTO HaBUaHHs. Bukopucrano Ha6ip HDFS v3 TraceBench, mo
micTuTh moHan 370 TUCSY TpacyBaHb, 3ibpanux y cepenosuiii Hadoop Distributed File System. O6po6ka BkiIouyana
BUJQJIEHHS LIYMY, IeMaTu3allilo Ta 3MeHIIeHHs Ay6sikaTiB. JaHi BekTopu3zoBaHo MeTonoM Term frequency — inverse
document frequency, mic/ist yoro HaBueHO Mogenb RandomForestClassifier. PesynbraTyt eKcliepuMeHTIB IToKasaiu, o
OTITMMi3allisl BXiZHMX JaHUX JO3BOJIMJIA 3MEHIIUTHU 3arajJbHMUII yac 06pobKM Maiike BIUsiTepo. Yac, HeoOximHMit 1s
BeKTOpM3allii TEKCTy Ta HABUAHHSI MOJeNi, CKOPOTUBCS, 110 AAE 3MOTY IMPUILIBUAIIUTIA POOOTY 3 BEIMKUMU 06CsTaMu
soriB. IIpm 1pomy TOUHiCTh Kaacudikauii He auine 36epernacsi, a # MPOAeMOHCTPyBaja He3HAUHe IMOKpaIleHHS:
nokasHuku Fl-score Ta koedinieHTa Kopensiii MeTbioca 3aIMIIMANCS CTaGiIbHO BUCOKMMM. TaKkoK CIIOCTepiramocs
3HIMKeHHs 3HaueHHs Log Loss, 1110 CBiIUMIO0 PO MiABUIIeHHS BIIEBHEHOCTI MOJiei y BIaCHMX MPOTHO3aX. Ile 0co6imBo
BaXX/JIMBO B yMOBaX He306a/JaHCOBAaHMX KJIACiB, XapaKTepHUX [JIs 3amau kiacudikamii gedekrtis. JeTanbHuii aHami3
BUSIBUB, 1110 3HAUHA YACTHHA CIYy>K60BO1 Ta MOBTOPIOBaHOI iHbOpMaIllii B Jiorax He € KPUTUIHOIO J1JIs1 HABUAHHST MOJIeTi,
a il BuJasieHHs HAaBIaKy MOKPAIIye SIKiCThb MiArOTOBKM JaHuX. Y X0i po60TH TaKOX OyJI0 MiATBEPIKEHO, IO OTPUMaHi
LJIbOBi MiTKM [J151 JIOTiB BiJITOBigal0Th TUTIOBMM KJlacaM IMOMMJIOK. PeaizoBaHa 06po6ka jior-daiiiiB He Jinilie CKOpouye
00UMCIIOBaAbHI BUTPATH, ajne i MmiaTpumye abo IMOKpallye SIKicTb MporHo3yBaHHS. Lli pesynbTaTu miaTBepIMIN
IOLIMBHICTh BKAIOUEHHS eTaly OYMIIeHHs Ta ONTUMIi3allii JIOTiB y 3arajibHuit poliiec mobynoBM Mozeieil MalMHHOTO
HaBYaHHS IJISI aBTOMAaTK30BaHOTO TeCTyBaHHs. OTpMMaHi pe3yabTaT MOXYTbh OYTM iHTerpoBaHi B aBTOMAaTM30BaHi
naiiriaiitam ajist knacudikanii gedekTis i popmyBaHHS 6ar-penopTis. Le cripuaTiMe 3MeHIIeHHIO 06CsTy py4HOi mpaili
Ta MiJBUIIEeHHIO e(eKTUBHOCTI KOMaHT,
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