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Abstract. The purpose of the study was to investigate the effect of automatic testing log file preprocessing on the 
speed of vectorisation and training of machine learning models. The HDFS_v3_TraceBench set was used, which contains 
more than 370 thousand traces collected in the Hadoop Distributed File System Environment. Processing included noise 
removal, lemmatisation, and duplication reduction. The data was vectorised using the Term frequency – inverse document 
frequency method, and then the RandomForestClassifier model was trained. The experimental results showed that 
optimising the input data reduced the total processing time by almost five times. The time required for text vectorisation 
and model training has been reduced, which helped to speed up work with large volumes of logs. However, the classification 
accuracy was not only preserved, but also showed a slight improvement: the F1-score and Matthews correlation coefficient 
indicators remained consistently high. There was also a decrease in the Log Loss value, which indicated an increase in 
the model’s confidence in its own forecasts. This is especially important in the context of unbalanced classes that are 
characteristic of defect classification problems. A detailed analysis showed that a significant part of the service and 
repetitive information in the logs is not critical for training the model, and its removal, on the contrary, improves the 
quality of data preparation. In the course of the study, it was also confirmed that the resulting target labels for logs 
correspond to typical error classes. Implemented log file processing not only reduces computational costs, but also 
supports or improves the quality of forecasting. These results confirmed the feasibility of including the log cleaning and 
optimisation step in the overall process of building machine learning models for automated testing. The results obtained 
can be integrated into automated pipelines for classifying defects and generating bug reports. This will help to reduce the 
amount of manual labour and increase the efficiency of teams

Keywords: regular expressions; lemmatisation; vectorisation; machine learning; test automation

Introduction
Automated testing of the latest software generates large 
volumes of unstructured log files, which are complicated 
by the growing number of tests and the complexity of sys-
tems. According to R.  Peronto  (2024), the annual growth 
in the volume of log files is 250%. Traditional log analysis 
methods are expensive and slow, which leads to delays in 
detecting defects and releasing software. Machine learn-
ing allows automating this process, but the effectiveness 
of models largely depends on the quality of preprocessing: 
redundant information slows down learning, and excessive 
filtering reduces accuracy. The balance between these ex-
tremes determines the performance of the system, espe-
cially in problems of classification of defect types, where it 

is important not only to identify the problem, but also to 
understand its nature.

Recent international studies have mainly focused 
on detecting anomalies in logs. R.R.  Abdalla & A.K.  Ju-
maa (2022) in their study showed the effectiveness of ML 
(Machine Learning) when working with unstructured jour-
nals, but the classification of known defects was not con-
sidered. S. Ramachandran et al.  (2023) proposed a model 
based on deep neural networks and custom “LogWord-
2Vec” vectorisation for classifying errors in large log files, 
achieving high accuracy, although the impact of preproc-
essing on resource consumption was ignored. Log vectori-
sation is a key step in preparing for analysis. TF-IDF (Term 
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frequency – inverse document frequency) remains one of 
the most common approaches for highlighting informa-
tive words. A. Sandhu & S. Mohammed (2022) noted that 
frequently repeated terms reduce the quality of features, 
so limiting the number of duplicates helps reduce their 
impact while maintaining the semantic load of messages. 
In application systems, log analytics is increasingly used 
to detect states or types of errors. A. Brandão & P. Geor-
gieva (2020) was one of the first to apply ML to network 
logs to detect attacks. P. Ryciak et al.  (2022) adapted this 
approach to search for anomalies in system logs using se-
quential models. E. Shirzad & H. Saadatfar (2022) showed 
that analysis of patterns in unstructured logs allows pre-
dicting failures in a Hadoop cluster, which increases the 
reliability of the system. Y.  Huangfu  (2022) investigated 
the use of various machine learning approaches to diag-
nose log-based software failures, emphasising the impor-
tance of data preprocessing to improve model efficiency. 
Q. Qin et al.  (2024) proposed a two-step approach to log 
file processing, using semi-supervised learning to speed 
up log classification in large online systems. Z.A. Khan et 
al. (2024) conducted an empirical study of the effect of log 
parsing on the accuracy of anomaly detection, emphasis-
ing that the distinguishing property in parsing results is 
key to achieving high accuracy. The problem of preproc-
essing log files was also actively investigated by Ukrainian 
researchers. In particular, M. Prodeus et al. (2024) proved 
that standardisation, normalisation, and feature selection 
significantly improve Random Forest results in network 
data anomaly detection problems. Despite the differenc-
es in domains, this confirmed the importance of filtering 
unnecessary technical information in logs to improve the 
efficiency of models. S. Kapitanets & G. Radelchuk (2022) 
emphasised the importance of orderly data logging for 
timely detection of failures in software systems, noting 
that chaotic logging practices significantly complicate er-
ror detection. O. Khil & V. Yakovina (2023) emphasised in 
their study that the success of the model largely depends 
on the quality of input data. The study by S.A. Hussein & 
S.R. Répás (2024) provided an overview of modern methods 
for detecting anomalies in log files using machine learning 
algorithms. The researchers analysed the effectiveness of 
statistical, ML, and DL approaches in the context of vari-
able structure and large amounts of log data, highlighting 
the growing role of AI in strengthening cybersecurity.

The purpose of this study was to investigate the in-
fluence of log file preprocessing methods on the efficiency 
of machine learning in automatic defect classification. In 
particular, it was considered how noise removal using reg-
ular expressions, lemmatisation, and TF-IDF vectorisation 
affects the speed of converting text data to numeric vectors 
and model training.

Materials and Methods
To achieve this goal, a set of methods of scientific cogni-
tion was applied, including empirical and experimental 
approaches. In particular, a computational experiment was 

conducted: a data processing and analysis pipeline was im-
plemented, on which various scenarios for preprocessing 
log files were tested. The methods of cluster analysis (for 
preliminary detection of structures in data) and comput-
er experiment were used to evaluate the performance of 
text data preprocessing, the learning time of the machine 
learning model, and the accuracy of model prediction. The 
results of various data preparation methods were com-
pared with each other (comparative analysis method) to 
identify their impact on speed and accuracy. This approach 
allows drawing reasonable conclusions about the causal re-
lationships between the applied data transformations and 
the obtained ML model metrics. 

The open dataset HDFS_v3 (TraceBench), a collection 
of log files obtained in the Hadoop distributed file system 
(HDFS) during cluster operation (Zhou  et al.,  2014). This 
set contains more than 370,000 trace records (log messag-
es) from the real infrastructure-as-a-service (IaaS) envi-
ronment. Below is the programme code for calculating the 
silhouette score based on a data set:

import matplotlib.cm as cm 
import matplotlib.pyplot as plt 
import numpy as np 
from sklearn.metrics import silhouette_samples, silhouette_score 
from sklearn.mixture import GaussianMixture 
 
X = X.toarray() 
range_n_clusters = [3, 4, 5, 6] 
 
fig, axes = plt.subplots(2, 2, figsize = (15, 10)) 
axes = axes.flatten() 
 
for idx, n_clusters in enumerate(range_n_clusters): 
    gmm = GaussianMixture(n_components = n_clusters, random_
state = 42) 
    cluster_labels = gmm.fit_predict(X) 
 
    # Calculate avg silhouette coefficient 
    silhouette_avg = silhouette_score(X, cluster_labels) 
    print( 
        f”n_clusters = {n_clusters}, average silhouette  
coefficient = {silhouette_avg:.4f}” 
    ) 
 
    # Calculate silhouette coefficient for each sample 
    sample_silhouette_values = silhouette_samples(X, cluster_labels)
 
    y_lower = 10 
    ax = axes[idx] 
    ax.set_title( 
        f”Number of clusters: {n_clusters}\nAverage silhouette 
coefficient: {silhouette_avg:.4f}” 
    ) 
    ax.set_xlabel(“Silhouette coefficient”) 
    ax.set_ylabel(“Cluster”) 
 
    ax.set_xlim([-0.1, 1]) 
    ax.set_ylim([0, len(X) + (n_clusters + 1) * 10]) 
    ax.axvline(x = silhouette_avg, color = ”red”, linestyle = ”--”) 
 
    for i in range(n_clusters):
        ith_cluster_silhouette_values  =  sample_silhouette_
values[cluster_labels = = i]
        ith_cluster_silhouette_values.sort() 
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        size_cluster_i = ith_cluster_silhouette_values.shape[0] 
        y_upper = y_lower + size_cluster_i 
 
        color = cm.nipy_spectral(float(i) / n_clusters) 
        ax.fill_betweenx( 
            np.arange(y_lower, y_upper), 
            0, 
            ith_cluster_silhouette_values, 
            facecolor = color, 
            edgecolor = color, 
            alpha = 0.7, 
        ) 
 
        ax.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
        y_lower = y_upper + 10  # 10 for space between clusters
 
    ax.set_yticks([])  # Hide sticks for Y axis 
    ax.set_xticks(np.arange(-0.1, 1.1, 0.2)) 
 
plt.tight_layout() 
plt.show()

Since the purpose of the study was to train the ML mod-
el to classify defect types, and the HDFS_v3_TraceBench  
dataset contains only log files without corresponding  

labels, the first step was to create target classes (labels) for 
each log file. The first step was to read the log files and 
create a pandas.DataFrame structure with error messages; 
next, the data were vectorised using the TF-IDF method 
and clustered using Gaussian mixture; the optimal num-
ber of clusters was determined using the silhouette score, 
according to A. Géron (2022), and creating a pandas.Data-
Frame with target classes for further model training. Ulti-
mately, the obtained clusters were analysed and compared 
with the types of defects given in the official documenta-
tion according to the HDFS architecture guide (n.d.). 

The next step was data preprocessing. Problems 
identified in logs: unstructured, redundant information 
and noise. To solve these problems, the following pre-
treatment steps were implemented (Fig. 1): using regular 
expressions, timestamps, logging levels (INFO, DEBUG, 
ERROR, WARN), ID (Identification Number), IP address-
es, UUID (Universal Unique Identifier) and extra special 
characters were removed; words were returned to their 
original form to improve the quality of vectorisation and 
data consistency; the number of duplicate messages was 
reduced to reduce the amount of data.

Figure 1. Block diagram of log file preprocessing
Source: developed by the author based on research

After preprocessing the data, the TF-IDF (Term fre-
quency – inverse document frequency) method was used 
to vectorise the text, implemented using the TfidfVec-
torizer library from the scikit-learn package, according 
to the TfidfVectorizer (n.d.). This method was widely 
used for processing text data, as it allows determining 

BEGIN

Read log files in DataFrame with columns 
TEST_RUN_ID, FULL_LOG

For each line in DataFrame [FULL_LOG]
Take text from cell 

FULL_LOG

Split into lines

Remove noise 
(timestamps, IP, technical information...)

Lemmatisation 
(WordNetLemmatizer)

Limit the number of 
duplicate lines

Save the processed result 
in DataFrame

Vectorise text (TfldVectorizer)

END

the weight of each word based on its frequency in the 
document and rarity throughout the corpus, according 
to G. Salton et al. (1975). TF-IDF helps to reduce the im-
pact of noisy or overly frequent words by highlighting 
key terms that are unique or relevant to specific mes-
sages or errors. 
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Equation for calculating TF:

TF(𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑) = Number of times the term 𝑡𝑡𝑡𝑡 appears in the document  𝑑𝑑𝑑𝑑
Total number of terms in the document 𝑑𝑑𝑑𝑑

  , (1)

where TF – frequency of the term, t – the term being an-
alysed, d  – the document for which the analysis is being 
performed.

Equation for calculating IDF:

IDF(𝑡𝑡𝑡𝑡,𝐷𝐷𝐷𝐷) = Total number of documents in the corpus 𝐷𝐷𝐷𝐷
Number of documents including the term 𝑡𝑡𝑡𝑡

  ,       (2)

where IDF – inverse frequency of documents, t – the term 
being analysed, D – entire body of documents.

Equation for calculating TF-IDF:

TF - IDF(t, d, D) = TF(t, d) × IDF(t, D),             (3)

where TF-IDF  – combined metric that considers the 
frequency of the term in the document and its rarity 
throughout the body, t – the term being analysed, d – the 
document for which the analysis is performed, D – entire 
body of documents, TF – term frequency, IDF – inverted 
document frequency.

To implement this pipeline, the Pipeline interface was 
used, which inherits the BaseEstimator classes (BaseEsti-
mator section in scikit-learn official documentation, n.d.) 
and TransformerMixin (TransformerMixin, n.d.), according 
to Developing scikit-learn estimators (n.d.): 

import re 
from typing import Union, Optional 
from sklearn.base import BaseEstimator, TransformerMixin 
from nltk.stem import WordNetLemmatizer 
 
 
class RegexpCleaner(BaseEstimator, TransformerMixin): 
    “””Removes substrings for the given patterns.””” 
 
    def __init__(self, patterns: Union[str, list[str]]) -> None: 
        “””Initialize with a single pattern, or list of patterns to 
remove. 
 
        :param patterns: e.g. r’[^a-zA-Z\s]’, [r’[^a-zA-Z\s]’, ...] 
        “”” 
        self.patterns: list[str] = [patterns] if isinstance(patterns, str) 
else patterns 
 
    def fit(self, X: list[str], y: 
Optional[list] = None) -> “RegexpCleaner”: 
        “””Dummy function to follow the interface of a 
transformer.””” 
        return self 
 
    def transform(self, X: list[str], y: Optional[list] = None) -> 
list[str]: 
        “””For each line in X remove given pattern one by one. 
 
        :param X: dataset to transform 
        :param y: added to implement interface. 
        :return: transformed dataset 
        “”” 
        cleaned: list[str] = [] 
        for text in X: 
            for pattern in self.patterns: 
                text = re.sub(pattern, “”, text) 

            cleaned.append(text) 
        return cleaned 
 
class Lemmatizer(BaseEstimator, TransformerMixin): 
    “””Lemmatizes data in a given dataset””” 
 
    def __init__(self) -> None: 
        self.lemmatizer = WordNetLemmatizer() 
 
    def fit(self, X: list[str], y: Optional[list] = None) -> “Lemmatizer”: 
        “””Dummy function to follow the interface of a 
transformer.””” 
        return self 
 
    def transform(self, X: list[str], y: 
Optional[list] = None) -> list[str]: 
        “”” 
        Lemmatize the lines in the given dataset. 
        “”” 
        lemmatized: list[str] = [] 
        for text in X: 
            words = text.split() 
            lemmatized_words = [self.lemmatizer.lemmatize(word) for 
word in words] 
            lemmatized.append(“ “.join(lemmatized_words)) 
        return lemmatized 
 
 
class DuplicateLimiter(BaseEstimator, TransformerMixin): 
    “””Limits number of duplicates in a given dataset””” 
 
    def __init__(self, max_dupes: int = 5) -> None: 
        “””Initialize with a number of duplicates to leave 
 
        :param max_dupes: number of duplicates to leave 
        :raises ValueError: if max_dupes has an incorrect type 
        “”” 
        if not isinstance(max_dupes, int): 
            raise ValueError(f”max_dupes should be integer, 
{type(max_dupes)} was given.”) 
        self.max_dupes = max_dupes 
 
    def fit(self, X: list[str], y: 
Optional[list] = None) -> “DuplicateLimiter”: 
        “””Dummy function to follow the interface of a 
transformer.””” 
        return self 
 
    def transform(self, X: list[str], y: Optional[list] = None) -> list[str]:
        “””Limit the duplicates in a dataset 
 
        :param X: dataset to transform 
        :param y: added to implement interface. 
        :return: transformed dataset 
        “”” 
        line_counts = {} 
        result = [] 
        for line in X: 
            line_counts[line] = line_counts.get(line, 0) + 1 
            if line_counts[line] < = self.max_dupes: 
                result.append(line) 
        return result 

Such a pipeline for data preprocessing has a concise 
structure and can be easily expanded if necessary:

from sklearn.pipeline import Pipeline 
 
ID_PATTERN = r’\b[A-F0-9]{16},’ 
SPECIAL_CHAR_PATTERN = r”[^a-zA-Z\s]” 
MULTIPLE_WHITESPACES_PATTERN = r”\s+” 
 
pipeline = Pipeline([ 
    (‘regex_cleaner’, RegexpCleaner(patterns=[ID_PATTERN, 
SPECIAL_CHAR_PATTERN, MULTIPLE_WHITESPACES_



Technologies and Engineering, Vol. 26, No. 2, 2025 31

Kaiafiuk

PATTERN])), 
    (‘lemmatizer’, Lemmatizer()), 
    (‘dup_limiter’, DuplicateLimiter(max_dupes = 5)), 
]) 
 
X_preprocessed = pipeline.fit_transform(X)

The last step was to select the model and metrics for 
evaluation. The RandomForestClassifier algorithm, which 
is an ensemble machine learning method known for its 
high accuracy and resistance to retraining in classification  

problems, was chosen to classify defect types. Previous 
studies confirm its effectiveness under similar conditions, 
according to M. Prodeus et al. (2024). Three metrics were 
used to evaluate the model quality: Log Loss, F1-score, 
and MCC (Table 1). Each of them measures different as-
pects of the algorithm’s performance, which is especially 
important for working with unbalanced classes that are 
often found when classifying defects in log files, accord-
ing to C. Cao et al. (2020).

Metric What it measures Why it is used

Log Loss How confident is the model in its predictions Considers the probability of predictions
F1-score Balance precision and recall Important for unbalanced classes

MCC General correlation of predictions with real classes Best metric for unbalanced data

Table 1. Metrics for evaluating the model

Source: developed by the author based on C. Cao et al. (2020)

The use of these metrics allows getting a compre-
hensive understanding of the quality of the classification 
model, ensuring the reliability and efficiency of automated 
analysis of defects in log files.

In this context, the programme code that was used to 
create and train the model is presented:

X_train, X_test, y_train, y_test = train_test_split(X_, y, test_
size = 0.7, random_state = 42, stratify = y) 
 
rf_clf = RandomForestClassifier(random_state = 42, n_
estimators = 100) 
start_time_train = time.time() 
rf_clf.fit(X_train, y_train) 
train_time = time.time() - start_time_train 
 
y_pred = rf_clf.predict(X_test) 
predict_proba = rf_clf.predict_proba(X_test) 
 
log_loss_ = log_loss(y_test, predict_proba) 
f1 = f1_score(y_test, y_pred, average=”weighted”) 
matthews = matthews_corrcoef(y_test, y_pred) 
print(f”log_loss: {log_loss_:.4f}, f1: {f1}, matthews: {matthews}, 
train_time: {train_time}”)

Results and Discussion

This section presents the results of an experimental study 
and their analysis. First, the obtained cluster structures and 
the formation of defect classes were considered, followed by 
the effect of pre-processing on the learning rate and model 
accuracy. In the end, a comparison is made with the latest 
developments of other researchers in the field of log file 
analysis. This approach ensured the integrity of the pres-
entation and allowed interpreting the results qualitatively.

The obtained cluster analysis data confirmed the pres-
ence of five groups (clusters) in the data sample. The values 
of the silhouette coefficient for a different number of clus-
ters were: for 3 clusters – 0.3758 (unsatisfactory separa-
tion); 4 – 0.4770 (improvement, but still weak); 5 – 0.5471 
(optimal balance of cohesion and separation); 6 – 0.6088 
(higher result, but there is an appearance of overtraining 
and blurring of borders between some clusters). Thus, the 
choice of 5 clusters as the optimal option for constructing 

classification labels is justified. Figure 2 showed the results 
of the silhouette coefficient analysis for a different number 
of clusters, confirming the above values.

Figure 2. Silhouette factor analysis based  
on the number of clusters

Source: developed by the author based on research

Figure 3 showed the result of clustering using an un-
controlled Gaussian Mixture Model. For clarity, the data 
dimension was reduced to two main components using the 
PCA (Principal component analysis) method, which allows 
mapping clusters in two-dimensional space. 

Figure 3. Visualisation of clusters obtained  
during the previous step

Source: developed by the author based on research
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The resulting clusters look clearly separated, which in-
dicates a successful choice of model parameters. The result 
corresponds to the previous silhouette analysis, according 
to which the optimal number of clusters is 5-6. In this case, 
the model also formed 5 clusters, which confirms the con-
sistency between different analysis methods. 

Next, a dataset was generated with labels (target val-
ues) for each log file from the dataset. Figure 4 showed the 
distribution of the sample by five classes of defects (codes 
0-4) detected during automated testing. The X-axis shows 
the codes of defect classes, and the Y-axis shows the num-
ber of samples in each class. According to the HDFS ar-
chitecture guide  (n.d.), the resulting uneven distribution 
corresponds to the types of defects that were removed as 
part of the use of the system under study. It displays the 
actual types of failures, which include: data disk failure, 
heartbeats and re-replication, cluster rebalancing, data in-
tegrity, and metadata disk failure.

The distribution between classes was uneven, which 
indicates a more frequent occurrence of certain types of de-
fects. In particular, class 0 (red) contains the largest num-
ber of samples, while classes 2 (purple) and 4 (pink) con-
tain the least. This imbalance is typical for large distributed  

systems and affects further training of models, because 
models can lean towards the dominant class. 

Figure 4. Distribution of the sample by five classes of defects
Source: developed by the author based on research

Figure 5. Log file data format from the HDFS_v3_TraceBench dataset
Source: J. Zhu et al. (2013)

To illustrate the input data, Figure 5 showed a fragment 
of a raw log file from the HDFS_v3_TraceBench dataset. The 
file contains a significant amount of noise and duplicate 
service records. This format is typical for log files generated 
by software systems or automated tests, and confirms the 
presence of unstructured, redundant information in logs.
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The comparative analysis performed showed a clear 
advantage of the model trained on cleared logs over the op-
tion without preprocessing. First, the volume and structure 
of input data changed significantly: deleting duplicate and 
service records reduced the volume of log files by almost 
80%, reducing the dimension of the feature space. Optimis-
ing the input data significantly reduced the training time of 
the model, as shown in Figure 6. The first column showed 
the time spent on training (red), and the second column 
showed the time spent on preprocessing (blue) and train-
ing. The results showed that although data preprocessing 
takes time, the total time spent processing data and train-
ing the model is almost five times less compared to training 
the model on raw data. In particular, the conversion of log 
files to TF-IDF vectors and further training of the model on 
cleaned data was much faster than on raw data. This is im-
portant from the standpoint of scaling, because it helps to 

speed up the analysis of large volumes of log files without 
additional resources. In addition, the preprocessing process 
can take place separately from vectorisation and training, 
to save resources or save disk space spent on storing logs. 

Figure 6. Impact of data quality on time spent 
on vectorisation

Source: developed by the author based on research
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The simulation results showed that pretreatment of 
data contributed not only to the preservation, but also to 
the improvement of classification accuracy. Figure 7 com-
pared the performance of the model trained on cleaned 
data with the model built on raw input data. There was 
a moderate increase in the values of the F1 measure and 
the Matthews correlation coefficient (MCC) after cleaning, 
which indicated a decrease in noise levels and the pres-
ervation of key informative features. A slight increase in 
the value of the Log Loss metric did not significantly af-
fect the overall quality of classification, which indicates 
that the model remains confident in its forecasts. Thus, the 
model trained on cleared logs demonstrated both acceler-
ation and high stability of accuracy metrics. Consequently, 
high-quality preprocessing of logs provided simultaneous 
acceleration of work and increased reliability of the mod-
el, which is a significant advantage from the standpoint of 
practical application in defect analysis.

a LogEvent2Vec model that directly feeds log events to the 
input of a word2vec network for vectorisation. This helped 
to avoid multi-level transformations and speed up data 
analysis by about 30 times, while improving the accuracy 
of anomaly detection. Although the TF-IDF approach pre-
sented in this paper is simpler, it also provided approxi-
mately five-fold acceleration, which confirms the general 
trend: optimising the log representation significantly af-
fects the performance of models and allows adapting the 
analysis to limited computing resources. S.A.  Hussein & 
S.R.  Répás  (2024) noted the advantages of semantic fea-
tures (based on word2vec) over purely statistical features 
(TF-IDF) for anomaly recognition tasks in system logs. 
However, using the word2vec technique itself requires sig-
nificant computational resources and careful dictionary 
construction. In the case of the current study, even the use 
of a relatively simple TF-IDF proved effective due to pre-
liminary clearing of logs, which reduced noise and high-
lighted meaningful terms, which allowed compensating for 
the lack of a deeper semantic context. Moreover, the results 
obtained are consistent with the findings of Z.A. Khan et 
al. (2024), who showed that it is not so much the absolute 
accuracy of log parsing as the ability to distinguish inform-
ative characteristics (“distinctiveness”) that determines 
the success of models. In this context, the experiment of 
the current study was aimed precisely at improving the se-
lection of features through data cleaning, which ultimate-
ly allowed improving both the speed and accuracy of the 
model without complicating the architecture. Thus, the 
comparison confirmed the hypothesis that high-quality 
preprocessing of log files is a key factor in both speeding 
up calculations and improving the accuracy of defect pre-
diction, which is consistent with trends in current research. 
U. Meteriz et al.  (2020) presented a log classification sys-
tem for telecom systems using a deep neural network. The 
researchers noted the success of advanced NLP (Natural 
Language Processing) for logs, which opens up prospects 
for automated analysis of complex technical messages. The 
results of the current study are consistent with their clas-
sification accuracy, although the approach used in the cur-
rent study (TF-IDF + RandomForest) is significantly simpler 
and resource-saving compared to the deep CNN (Convo-
lutional Neural Network) model. The effectiveness of data 
cleaning was also confirmed by the findings of O.  John-
phill et al. (2024), according to which removing uninforma-
tive records and duplicate messages allows the model to fo-
cus on relevant signals, which increases learning efficiency. 
D.A. Bhanage & A.V. Pawar (2023) presented an approach 
to classifying system logs as natural language texts. The 
researchers tested a combination of several vectorisation 
techniques – TF-IDF, Word2Vec, and tonality analysis (po-
larity) – in combination with classical classifiers. According 
to the results, the most promising approach was to con-
sider the “tone” of messages, which improved the recogni-
tion of complex irregular logs. D.A. Bhanage & A.V. Pawar’s 
approach demonstrated that additional semantic features 
(such as sentiment) can improve the quality of log analysis. 

Figure 7. Influence of data quality on model accuracy
Source: developed by the author based on research

The results obtained in the framework of this study 
are consistent with the conclusions of modern works in 
the field of analysis of system journals. In particular, M. Al-
jabri  et al.  (2022) successfully applied Machine Learning 
and Deep Learning algorithms to classify network firewall 
records, achieving very high accuracy (more than 99% for 
Random Forest). This is consistent with the current study, 
where the Random Forest model also showed consistently 
high performance on cleaned data. This coincidence of re-
sults indicates the universality of the chosen approach to 
log classification, even if the data nature is different.  Similar 
results were observed in the study by V. Koval et al. (2022), 
where the Random Forest Regression model was used to 
predict the quality of electricity in systems with renew-
able sources. Despite the different scope of application, 
the model demonstrated high stability and accuracy when 
working with a large array of synchronised data. This con-
firms the flexibility and reliability of Random Forest in tasks 
that require processing complex structured logs, and rein-
forces the argument for the universality of this approach 
in classification and forecasting problems. Other research-
ers have also emphasised the importance of effective pre-
processing of journals. Thus, J. Wang et al. (2020) proposed  
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The method used in this study, on the contrary, is deliber-
ately simplified (only TF-IDF without deep semantic anal-
ysis), which makes it less resource-intensive, although it is 
somewhat inferior in terms of contextual nuances. P. Marjai 
& A. Kiss (2024) pointed out in their paper that pre-struc-
turing logs helps the model to better generalise error mes-
sages. The results obtained in the current study confirmed 
this trend: cleaning and normalising text data from log files 
helps to improve classification accuracy even without com-
plicating the vectorisation approach. This is especially im-
portant in application environments where resources are 
limited and data processing speed requirements are critical.

The results showed that the quality and volume of log 
data have a complex relationship with the performance of 
machine learning models. In contrast to the common prac-
tice of accumulating and storing complete logs, the con-
ducted experiment indicates the possibility of significantly 
reducing the amount of input information without nega-
tively affecting the accuracy of classification. In particular, 
the removal of service records, repetitions, and technical 
labels helped not only to reduce processing time, but also 
to achieve better classification quality by key metrics. This 
effect can be explained by a decrease in the influence of 
information noise, which usually overloads the model and 
reduces its ability to distinguish relevant patterns in logs. 
The presence of a regular structure in messages after lem-
matisation and cleaning can also help improve the vector-
isation process, especially when using methods such as 
TF-IDF. However, the results indicate the potential adapt-
ability of the proposed approach to other logging systems. 

Conclusions
In the course of the study, it was found that log file pre-
processing, which includes noise removal, lematisation, 
and limiting message duplication, significantly improves 
the efficiency of building machine learning models for de-
fect classification. In particular, it has been shown that the 
use of regular expressions reduces the amount of unneces-
sary technical information, such as timestamps, identifiers, 
and log levels, which simplifies the structure of messages 
and facilitates further vectoring.

It has been proven that preprocessing reduces the time 
required for vectorisation and model training by almost five 
times without losing accuracy. The accuracy of the model 
is not only preserved, but also improved: an increase in the 
F1-score and Matthews correlation coefficient (MCC) was 
recorded, which indicates an improvement in the quality 
of classification even in the presence of unbalanced class-
es. In addition, it was found that the use of TF-IDF can  

effectively emphasise meaningful words of diagnostic val-
ue, while suppressing repetitive terms. This has a positive 
effect on the model’s noise resistance. It was also confirmed 
that the Log Loss value was decreasing, which indicates an 
increase in the model’s confidence in its forecasts.

In the course of the study, a number of logically con-
sistent and effective actions were identified that can be 
combined into a single pipeline for automatic processing 
of log files. Such a pipeline can be integrated into auto-
mated testing systems without significant losses for train-
ing the model, due to the effective allocation of the nec-
essary information. This reduces the burden on analysts, 
ensures high classification accuracy, and reduces the time 
required to process large amounts of log data. It is impor-
tant to note that the proposed approach does not depend 
on the use of complex or resource-intensive models and 
can be applied in real-world conditions without the need 
for high-performance equipment.

Thus, the results of the study confirmed the hypothesis 
that high-quality preprocessing of log files is a key factor in 
both speeding up calculations and improving the accuracy 
of models. The proposed approach can be successfully inte-
grated into automated testing pipelines, helping to improve 
the efficiency of detecting and classifying software defects. 
In addition to its direct application value, the study high-
lights the potential of using simple word processing tools 
to solve complex software testing problems. Although the 
study was limited to one data set and one model type, the 
results provide prerequisites for further study of the meth-
od’s stability to different domains and model architecture 
variants. The question of the extent to which other sources 
of information (e.g.,  contextual metadata) can influence 
the results of defect classification in logs remains relevant. 
In this context, the proposed solution is considered as a ba-
sis for future research.
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Вплив обробки лог-файлів на швидкість навчання  
та точність класифікації дефектів
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Анотація. Метою було дослідити вплив попередньої обробки лог-файлів автоматизованого тестування на 
швидкість векторизації та навчання моделей машинного навчання. Використано набір HDFS_v3_TraceBench, що 
містить понад 370 тисяч трасувань, зібраних у середовищі Hadoop Distributed File System. Обробка включала 
видалення шуму, лематизацію та зменшення дублікатів. Дані векторизовано методом Term frequency – inverse 
document frequency, після чого навчено модель RandomForestClassifier. Результати експериментів показали, що 
оптимізація вхідних даних дозволила зменшити загальний час обробки майже вп’ятеро. Час, необхідний для 
векторизації тексту та навчання моделі, скоротився, що дає змогу пришвидшити роботу з великими обсягами 
логів. При цьому точність класифікації не лише збереглася, а й продемонструвала незначне покращення: 
показники F1-score та коефіцієнта кореляції Метьюса залишилися стабільно високими. Також спостерігалося 
зниження значення Log Loss, що свідчило про підвищення впевненості моделі у власних прогнозах. Це особливо 
важливо в умовах незбалансованих класів, характерних для задач класифікації дефектів. Детальний аналіз 
виявив, що значна частина службової та повторюваної інформації в логах не є критичною для навчання моделі, 
а її видалення навпаки покращує якість підготовки даних. У ході роботи також було підтверджено, що отримані 
цільові мітки для логів відповідають типовим класам помилок. Реалізована обробка лог-файлів не лише скорочує 
обчислювальні витрати, але й підтримує або покращує якість прогнозування. Ці результати підтвердили 
доцільність включення етапу очищення та оптимізації логів у загальний процес побудови моделей машинного 
навчання для автоматизованого тестування. Отримані результати можуть бути інтегровані в автоматизовані 
пайплайни для класифікації дефектів і формування баг-репортів. Це сприятиме зменшенню обсягу ручної праці 
та підвищенню ефективності команд
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