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Abstract. The relevance of this study is conditioned by the increasing need to improve the effectiveness of 
environmental monitoring of amalgamated territorial communities in the context of growing anthropogenic and 
military impacts on the environment. The purpose of the study was to create an integrated decision support system 
for environmental monitoring, which allows combining data from different sources, continuously monitoring the state 
of ecosystems, predicting changes, and quickly responding to environmental threats. In the course of the research, a 
systematic approach, mathematical modelling of ecosystem dynamics, the least squares method for identifying model 
parameters based on limited data were applied, including cloud technologies, the Internet of Things, crowdsourcing 
platforms, and sensor networks for collecting and processing information were introduced. Data integration was carried 
out from government, public and departmental sources, which provided comprehensive coverage of various types of 
environmental impacts. The main results of the study were: development of a multi-level organisational structure of 
the monitoring system, construction of discrete and continuous mathematical models for assessing and predicting 
the state of ecosystems, implementation of recurrent algorithms for adapting models to changes in the environment. 
The system helped to ensure constant monitoring of industrial, agro-industrial and military-anthropogenic impacts, 
identify potential threats in a timely manner, assess their impact, and make informed management decisions to 
reduce environmental risks. The developed decision support system helps to effectively manage environmental risks, 
contributes to improving environmental safety and sustainable development of amalgamated territorial communities. 
The integration of advanced information technologies, mathematical models and public involvement in the monitoring 
process creates a new paradigm of environmental management in crisis conditions

Keywords: Internet of Things; military impact; crowdsourcing; mathematical modelling; anthropogenic load; risk 
management; cloud technologies

TECHNOLOGIES AND ENGINEERING

Introduction
Environmental monitoring in amalgamated territorial 
communities (ATC) defined a key role for sustainable de-
velopment and environmental protection. The problem of 
insufficient coordination between the international, state, 
local, public, and departmental levels was identified, which 

made it difficult to respond to threats in a timely manner, 
especially due to the growing anthropogenic and military 
burden. Public monitoring was recognised as important for 
the implementation of the right to a safe environment and 
the detection of violations. The relevance of the study was 
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the authorities and adapt to socio-cultural conditions, 
which makes it difficult to scale and stability the system.

B. Orlove et al. (2020) reviewed climate decision-mak-
ing processes. The researchers tracked the development of 
the industry from politics to the analysis of various stake-
holders – the private sector, community organisations, and 
indigenous communities, with a focus on cognitive and 
deliberative processes. Special attention was paid to the 
influence of the social environment, scientific knowledge, 
and conceptual framework. The advantages were an inter-
disciplinary approach that combined psychological and ra-
tional aspects, and the use of non-climatic narratives and 
the concept of urgency to encourage change. The disadvan-
tages were the complexity of performance assessment due 
to multidimensional processes, the lack of empirical data, 
the difficulty of interaction between participants and the 
limited integration of scientific data into practice, which 
makes it difficult to achieve climate policy goals.

A. Sadeghi-Niaraki et al. (2020) combined information 
from citizens with geoinformation technologies and mul-
ti-criteria analysis to improve pollution monitoring and 
decision-making in waste management. The researchers 
highlighted the advantages of the system – improving the 
accuracy and detail of data due to the participation of local 
residents as human sensors, and the effectiveness of man-
agement decisions and the development of environmental 
consciousness. The disadvantages were the heterogeneity 
and subjectivity of data, the complexity of verification and 
integration, the dependence of performance on the activity 
of the population, digital technologies, and infrastructure 
for collecting and analysing information. A.J. Constable et 
al. (2022) conducted an analysis of decision support tools 
in the field of climate risk management. Systematisation of 
methods, consideration of the political, social and cultural 
context, and involvement of interested parties were noted. 
The lack of a universal tool, complexity of integration in 
multi-level systems, uncertainty of goals and limited qual-
ity data were revealed. The importance of a flexible, con-
text-sensitive approach, and an iterative decision-making 
process was emphasised.

Recent research in systems ecology and decision sup-
port information technologies has shown the effectiveness 
of mathematical models of ecosystem dynamics, expert sys-
tems, the Internet of Things, cloud technologies, and crowd-
sourcing for integrated environmental monitoring. Despite 
the numerous systems at different levels, there are problems 
of interaction between them and modelling the impact of 
anthropogenic and military factors, which requires further 
study. The issues of identifying model parameters based on 
limited data and integrating multi-level monitoring systems 
were not sufficiently investigated. The purpose of the study 
was to develop and substantiate an integrated decision sup-
port system for environmental monitoring of amalgamated 
territorial communities using advanced information tech-
nologies, modelling ecosystem dynamics, and identifying 
parameters based on limited data to improve the effective-
ness of environmental risk management.

justified by the need to create an integrated decision sup-
port system (DSS) for combining information, continuous 
monitoring, forecasting, and rapid response in ATC. Global 
experience and current scientific paradigms were used for 
effective monitoring and implementation of advanced DSS.

A. Popov  (2024) focused on the analysis of advanced 
regional environmental monitoring systems using cloud 
and Internet of Things technologies. The study examined 
the level of development of integrated information systems 
for collecting, processing, and managing eco-data. The ad-
vantages are the use of the Internet of Things with mul-
tisensory systems for instant collection and processing of 
large amounts of information in real time. Due to its mod-
ular architecture, systems are flexible, scalable, and inte-
grated with other technologies. However, the complexity of 
integrating heterogeneous data and technologies, and the 
dependence of model accuracy on information quality, re-
main problems. It is also important to ensure compatibility 
and standardisation of components for effective interac-
tion of the system.

The study by A. Bonfante et al. (2024) detailed the de-
velopment of a geospatial DSS to support EU authorities in 
implementing climate change adaptation policies. The tool 
combines spatial and non-spatial data, works at various 
scales from municipality to Europe, and includes advanced 
climate models for assessing anomalies and crop adaptation. 
The advantages were openness, free access, flexible architec-
ture, working with large amounts of data, fast visualisation 
and report generation. The disadvantages were the com-
plexity of implementation due to the need for high-quality 
information and technical training of users, and significant 
efforts to standardise and compatibility of system compo-
nents. S. Xu (2024) combined the development of artificial 
intelligence-based DSS for sustainable urban planning in 
smart cities. The system analyses big data, models scenarios, 
and optimises resources to improve energy and water effi-
ciency, develop public gardens, and transport infrastructure. 
The advantages were an integrated approach, integration 
of various data and technologies to improve environmen-
tal sustainability, and forecasting long-term impacts and 
optimising resources. The disadvantages were dependence 
on data quality, which affects the accuracy of forecasts, the 
difficulty of integrating with existing infrastructure due to 
different standards, and the need for significant investment 
in technology and training of specialists.

The study by J. Haqbeen et al. (2021) focused on involv-
ing residents, particularly women and minorities, in identi-
fying problems and finding solutions for local authorities. 
The study demonstrated how digital tools promote equal 
participation of citizens in urban planning, even in times 
of crisis. The advantages were the involvement of different 
segments of the population, reducing bias in discussions, 
and creating a platform for dialogue between society and the 
authorities. The system collects and organises proposals, 
increasing the transparency and effectiveness of strategic 
planning. The disadvantages were the need to improve dig-
ital literacy, ensure confidentiality, and the need to support 
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Materials and Methods
The study was conducted in accordance with the principles 
of scientific correctness, reproducibility, and transparen-
cy. The key stages of scientific research were the analysis 
of current approaches to environmental monitoring and 
decision support systems; formalisation of necessary re-
quirements for an integrated multi-level monitoring sys-
tem; development of mathematical models of ecosystem 
dynamics; identification of model parameters based on 
a limited amount of data; creation of an organisational 
and technical structure for information support of the de-
cision support system. To achieve this goal, a systematic 
approach was applied, focused on the analysis of monitor-
ing levels (state, local, public, departmental), which con-
tributes to the comprehensive consideration of interac-
tion between participants in environmental control. The 
rationale for choosing modelling methods was explained 
by the need to recreate complex processes in terrestrial 
ecosystems under anthropogenic and military pressure. 
For this purpose, linear and nonlinear differential and dif-
ference equations were used to describe the dynamics of 
organic matter reserves (Chapin et al., 2012), and the least 
squares method for identifying model parameters based 
on available environmental data (Lysenko et al., 2017). To 
improve the accuracy of prediction, recurrent parameter 
estimation algorithms were used (Slabospytsky, 2008), 
which ensured the adaptation of models to changes in 
the environment. Recurrent algorithms for estimating 
ecosystem parameters are a type of algorithm that uses 
previous values or the state of the ecosystem to calculate 
the current value. 

The information base of the decision support system 
was developed based on integrating data from various sourc-
es: state and public environmental monitoring networks, 
crowdsourcing platforms, wireless sensor systems, and open 
databases (Füller et al.,  2021). For data collection, storage 
and processing, cloud technologies for the development of 
multidimensional databases, the Internet of Things for the 
development of intelligent sensors, automated workplaces 
for conducting expert assessments of the parameters of the 
impact of anthropogenic and military loads on ecosystems, 
local area networks and server capacities for decision sup-
port systems (Killen et al., 2022). The criteria for develop-
ing a sample for the empirical part of the study were based 
on the representativeness of data on various types of load 
on ecosystems (anthropogenic, agro-industrial, military) 
and the availability of high-quality information for model-
ling. The experimental base of the study covered data from 
open state and public sources of environmental monitoring 
(Ecodozor, n.d.; Ecozagroza, n.d.), and simulation results at 
test sites (dedicated locations for monitoring background 
monitoring parameters) that reflect typical environmental 
impact scenarios.

The dynamics of organic matter reserves in the bioge-
ocoenosis was described by a system of discrete equations 
that consider changes in organic mass reserves in various 
components of the ecosystem over a certain period of time:

�
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖 + 1) = 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖) + 𝛥𝛥𝛥𝛥𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖,  𝑖𝑖𝑖𝑖 + 1) − 𝛥𝛥𝛥𝛥𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖,  𝑖𝑖𝑖𝑖 + 1);
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 1) = 𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖) + 𝛥𝛥𝛥𝛥𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖,  𝑖𝑖𝑖𝑖 + 1) − 𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖,  𝑖𝑖𝑖𝑖 + 1);
𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖 + 1) = 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖) + 𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖,  𝑖𝑖𝑖𝑖 + 1) − 𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆∗(𝑖𝑖𝑖𝑖,  𝑖𝑖𝑖𝑖 + 1),

       (1)

where i ∈ N – discrete time; ΔP(i, i + 1), ΔG(i, i + 1), ΔS(i, i + 1) – 
respectively, an increase in aboveground phytomass, pre-
cipitation, and litter in the time interval from i to i + 1; 
ΔS

*(i, i + 1) – reduction of litter in the time interval from i 
to i + 1.

The sampling interval is assumed to be one year, and 
the countdown began with the period when plants reach 
their maximum development – this is usually the end of 
May or the beginning of June. In order to construct a con-
tinuous mathematical model, the following dependencies 
were used:

𝑃̇𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) ≅ 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖+1)−𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)
1 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

= 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖 + 1) − 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖); ;                (2)

𝐺̇𝐺𝐺𝐺(𝑡𝑡𝑡𝑡) ≅ 𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖+1)−𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖)
1 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

= 𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 1) − 𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖);  ;                (3)

𝑆̇𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) ≅ 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖+1)−𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)
1 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

= 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖 + 1) − 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)  .                 (4)

Given that in the first approximation, the increments 
ΔP(i, i + 1), ΔG(i, i + 1), ΔS(i, i + 1), ΔS

* (i, i + 1) are proportional to 
P(i) + S(i), P(i), G(i), S(i), respectively, a system of equations 
is derived:

�
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖 + 1) = 𝑎𝑎𝑎𝑎11𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖) + 0𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖) + 𝑎𝑎𝑎𝑎13𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖);
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 1) = 𝑎𝑎𝑎𝑎21𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖) + 𝑎𝑎𝑎𝑎22𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖) + 0𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖);
𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖 + 1) = 0𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖) + 𝑎𝑎𝑎𝑎32𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖) + 𝑎𝑎𝑎𝑎33𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖),

               (5)

𝑎𝑎𝑎𝑎11 = 1 + 𝛥𝛥𝛥𝛥𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)+𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

− 𝛥𝛥𝛥𝛥𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)

≅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡1;    a12 = 0;       (6)

𝑎𝑎𝑎𝑎13 = 1 + 𝛥𝛥𝛥𝛥𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)+𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

≅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡2  ;                         (7)

𝑎𝑎𝑎𝑎21 = 𝛥𝛥𝛥𝛥𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)

≅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡3  ;                          (8)

𝑎𝑎𝑎𝑎22 = 1 − 𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖)

≅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡4  ; a23 = 0; a31 = 0;          (9)

𝑎𝑎𝑎𝑎32 = 𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖)

≅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡5 ;  ;                          (10)

𝑎𝑎𝑎𝑎33 = 1 − 𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆∗(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

≅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡6  ;                      (11)

In matrix form, equation (5), considering external in-
fluence, has the following form:

�
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖 + 1)
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 1)
𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖 + 1)

� = �
𝑎𝑎𝑎𝑎11 0 𝑎𝑎𝑎𝑎13
𝑎𝑎𝑎𝑎21 𝑎𝑎𝑎𝑎22 0
0 𝑎𝑎𝑎𝑎32 𝑎𝑎𝑎𝑎33

� �
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖)
𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

� + �
𝑊𝑊𝑊𝑊1(𝑖𝑖𝑖𝑖)
𝑊𝑊𝑊𝑊2(𝑖𝑖𝑖𝑖)
𝑊𝑊𝑊𝑊3(𝑖𝑖𝑖𝑖)

�,      (12)

where Wn(i), (n
 = 1,—— 3 ) – external influences, including test 

factors.
Data from open state and public sources of environ-

mental monitoring (Ecodozor, n.d.; Ecozagroza, n.d.) were 
used to determine the indicators of anthropogenic and mil-
itary loads Wn(i), (n = 1,—— 3 ). Vector equation (12) provided a 
discrete model of the dynamics of organic matter reserves. 
The continuous model took the form:

;
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�
𝑃̇𝑃𝑃𝑃(𝑡𝑡𝑡𝑡)
𝐺̇𝐺𝐺𝐺(𝑡𝑡𝑡𝑡)
𝑆̇𝑆𝑆𝑆(𝑡𝑡𝑡𝑡)

� = �
𝑎𝑎𝑎𝑎11−1 0 𝑎𝑎𝑎𝑎13
𝑎𝑎𝑎𝑎21 𝑎𝑎𝑎𝑎22−1 0
0 𝑎𝑎𝑎𝑎32 𝑎𝑎𝑎𝑎33−1

� ⋅  �
𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡)
𝐺𝐺𝐺𝐺(𝑡𝑡𝑡𝑡)
𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡)

� + �
𝑊𝑊𝑊𝑊1(𝑡𝑡𝑡𝑡)
𝑊𝑊𝑊𝑊2(𝑡𝑡𝑡𝑡)
𝑊𝑊𝑊𝑊3(𝑡𝑡𝑡𝑡)

�  . (13)

The vector of unknown parameters was denoted as 
XT = [a11, a13, a21, a22, a32, a33]

 = [X1, X2, X3, X4, X5, X6] and as-
sumed Wn(i)

  ≡  0, (n  =  1, 2, 3), in which case, a system of 
equations was obtained to identify these parameters:

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖 + 1) = 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖) ⋅ 𝑋𝑋𝑋𝑋1 + 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖) ⋅ 𝑋𝑋𝑋𝑋2 + 0 ⋅ 𝑋𝑋𝑋𝑋3 + 0 ⋅ 𝑋𝑋𝑋𝑋4 + 0 ⋅ 𝑋𝑋𝑋𝑋5 + 0 ⋅ 𝑋𝑋𝑋𝑋6;      
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 1) = 0 ⋅ 𝑋𝑋𝑋𝑋1 + 0 ⋅ 𝑋𝑋𝑋𝑋2 + 𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖) ⋅ 𝑋𝑋𝑋𝑋3 + 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖) ⋅ 𝑋𝑋𝑋𝑋4 + 0 ⋅ 𝑋𝑋𝑋𝑋5 + 0 ⋅ 𝑋𝑋𝑋𝑋6;      
𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖 + 1) = 0 ⋅ 𝑋𝑋𝑋𝑋1 + 0 ⋅ 𝑋𝑋𝑋𝑋2 + 0 ⋅ 𝑋𝑋𝑋𝑋3 + 0 ⋅ 𝑋𝑋𝑋𝑋4 + 𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖) ⋅ 𝑋𝑋𝑋𝑋5 + 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖) ⋅ 𝑋𝑋𝑋𝑋6;      
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖 + 𝐾𝐾𝐾𝐾 + 1) = 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖 + 1) ⋅ 𝑋𝑋𝑋𝑋1 + 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖 + 1) ⋅ 𝑋𝑋𝑋𝑋2 + 0 ⋅ 𝑋𝑋𝑋𝑋3 + 0 ⋅ 𝑋𝑋𝑋𝑋4 + 0 ⋅ 𝑋𝑋𝑋𝑋5 + 0 ⋅ 𝑋𝑋𝑋𝑋6;
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 𝐾𝐾𝐾𝐾 + 1) = 0 ⋅ 𝑋𝑋𝑋𝑋1 + 0 ⋅ 𝑋𝑋𝑋𝑋2 + 𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 1) ⋅ 𝑋𝑋𝑋𝑋3 + 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖 + 1) ⋅ 𝑋𝑋𝑋𝑋4 + 0 ⋅ 𝑋𝑋𝑋𝑋5 + 0 ⋅ 𝑋𝑋𝑋𝑋6;
𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖 + 𝐾𝐾𝐾𝐾 + 1) = 0 ⋅ 𝑋𝑋𝑋𝑋1 + 0 ⋅ 𝑋𝑋𝑋𝑋2 + 0 ⋅ 𝑋𝑋𝑋𝑋3 + 0 ⋅ 𝑋𝑋𝑋𝑋4 + 𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 1) ⋅ 𝑋𝑋𝑋𝑋5 + 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖 + 1) ⋅ 𝑋𝑋𝑋𝑋6,

 

where K – time shift, K ∈ N.
Since a limited number of measurements are availa-

ble at the initial stage of studying the terrestrial ecosys-
tem of the ATC, it is sufficient to solve a system consist-
ing of six linear equations and containing six unknown 
variables to determine the vector of unknown parame-
ters. In this case, the least squares method was used in 
the recurrent form (Mokin et al., 2010), but only after the 
amount of data collected has increased. The obtained 
values of the parameters of the mathematical model of 
the ecosystem should be considered as a primary ap-
proximation – that is, as an initial condition that will be 
used in the future for the recurrent application of the 
least squares algorithm. This approach allows gradually 
refining the model parameters as the amount of incom-
ing information increases, and increases the accuracy of 
subsequent calculations. To confirm the correctness of 
the hypothesis put forward in relation to the mathemat-
ical model in the form (5), the following conditions were 
used: a12 = a23 = a31 = 0:

(14)

�
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖 + 𝜏𝜏𝜏𝜏) − 𝑎̑𝑎𝑎𝑎11𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖 + 𝜏𝜏𝜏𝜏) − 𝑎̑𝑎𝑎𝑎13𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 𝜏𝜏𝜏𝜏) ≅ 0;
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 𝜏𝜏𝜏𝜏) − 𝑎̑𝑎𝑎𝑎21𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖 + 𝜏𝜏𝜏𝜏) − 𝑎̑𝑎𝑎𝑎22𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 𝜏𝜏𝜏𝜏) ≅ 0;
𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖 + 𝜏𝜏𝜏𝜏) − 𝑎̑𝑎𝑎𝑎32𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 𝜏𝜏𝜏𝜏) − 𝑎̑𝑎𝑎𝑎33𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 𝜏𝜏𝜏𝜏) ≅ 0,

         (15)

where τ – time shift; a ̑11, a ̑13, a ̑21, a ̑22, a ̑32, a ̑33 – estimation of the 
values of the parameters of the mathematical model (12).

Given the limited number of experimental data avail-
able for calculating estimates of model parameters (12), it 
was necessary to apply the simplest and most efficient al-
gorithm for determining the parameters of the system of 
difference equations (5). This algorithm was based on rela-
tions (6)-(11), which established a relationship between the 
estimates of system parameters (12) and the increments of 
the corresponding biomass. First, equation (1) was solved 
with respect to changes ΔP(i, i + 1), ΔG(i, i + 1), ΔS(i, i + 1), using 
values P(i) and P(i + 1) known from observations, and it was 
assumed that the desired values ΔS

*(i, i + 1) = KSS(i), KS ∈ [0; 1] 
of the system parameters (12) were found. The parameters 
of this model were calculated based on real experimental 
data and were shown in Table 1, which ensured its compli-
ance with the actual characteristics of ecosystems. 

Table 1. Model adequacy check

Table 2. Performance improvement indicators

Note: accuracy of experimental data ±15%
Source: V. Smith (1988), F.S. Chapin et al. (2006)

Data type 1970 1971 1972

Data on the dynamics of organic matter reserves in the 
biogeocoenosis of reed grass meadow, [g/m2]

P(i) G(i) S(i) P(i) G(i) S(i) P(i) G(i) S(i)

154 124 121 240 190 145 295 204 245

Simulation modelling: 
1970 – initial conditions, 

1971, 1972 – forecast

linear model
continuous 154 124 121 234 182 136 318 262 218

discrete 154 124 121 226 166 150 325 250 200

nonlinear 
model

continuous 154 124 121 144 122 144 144 122 150

discrete 154 124 121 134 130 156 144 110 166

These experimental results remain relevant and can 
be used in contemporary research. To identify the parame-
ters, not only data taken from scientific sources were used, 
but also the results of specially conducted experimental 
observations. The initial values of the parameters were 

determined based on the analysis of the first two columns 
of the corresponding table, and considering the accepted 
litter loss coefficient, which is shown in Table 2, which al-
lows more accurately reproducing the real conditions of 
the ecosystem functioning.

Natural environment  
(number of model components) Conceptual objectivity, score 

Pragmatic objectivity (1-10 years), %
1 2 3 4 5 6 7 8 9 10

Phytocoenosis
Before Green phytomass – 1.

Kph Kph  Kph

1.5 
Kph  

1.5 
Kph 

1.5 
Kph

2 
Kph

2 
Kph

2.5 
Kph

3 
Kph After Green phytomass, litter – forest 

floor – 3 (prevails).
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A special observation algorithm based on the Lewin-
berger observer was used to assess and predict the state 
of organic matter in the ecosystem. The parameters of 
this algorithm were optimised using the standard error 
minimisation criterion, which ensured stable operation 
of the algorithm even in cases of significant errors in the 
measurements of green phytomass (Chapin  et al.,  2012). 
The parameters of the continuous model were calculated 
in the same way as for the discrete model, using the same 
relations. The model parameters were calculated using 

experimental data and the corresponding equations (17)-
(27). Based on the system of balance equations (1), a sys-
tem of nonlinear difference equations (16) was formed, 
which describe in detail the dynamic changes in the main 
components of the ecosystem. This model considered com-
plex interactions between elements of the biogeocoenosis, 
which helped to more accurately reproduce the processes 
that occur in the natural environment, especially in condi-
tions where the influence of anthropogenic or other exter-
nal factors is significant.

Note: the level of reduction in the current estimate error – less than 30%. Provided that pollution has led to a decrease in green 
phytomass growth by reducing the coefficient of organic matter transfer from litter to phytomass by only Kph %, or by slowing 
down the transfer of lower-level consumer biomass to higher-level biomass by Kz %
Source: A. Lysenko et al. (2017)

Natural environment  
(number of model components) Conceptual objectivity, score 

Pragmatic objectivity (1-10 years), %
1 2 3 4 5 6 7 8 9 10

Zoocoenosis
Before –

1.5  
Kz

1.5  
Kz

1.5 
Kz 

2 
Kz 

2 
Kz 

2 
Kz

2.5 
Kz

2.5 
Kz

3
Kz

3
KzAfter Divichky target range – 16.

Yavoriv military base – 18 (prevails).

Table 2. Continued

�
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖 + 1) = 𝑎𝑎𝑎𝑎1 ⋅ 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖) + 𝑎𝑎𝑎𝑎2 ⋅ 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖) ⋅ 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖) + 𝑎𝑎𝑎𝑎3 ⋅ 𝑃𝑃𝑃𝑃2(𝑖𝑖𝑖𝑖) + 𝑊𝑊𝑊𝑊1(𝑖𝑖𝑖𝑖);
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖 + 1) = 𝑏𝑏𝑏𝑏1 ⋅ 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖) + 𝑏𝑏𝑏𝑏2 ⋅ 𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖) + 𝑏𝑏𝑏𝑏3 ⋅ 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖) + 𝑏𝑏𝑏𝑏4 ⋅ 𝑃𝑃𝑃𝑃2(𝑖𝑖𝑖𝑖) + 𝑏𝑏𝑏𝑏5 ⋅ 𝐺𝐺𝐺𝐺2(𝑖𝑖𝑖𝑖) + 𝑊𝑊𝑊𝑊2(𝑖𝑖𝑖𝑖); 
𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖 + 1) = 𝑐𝑐𝑐𝑐1 ⋅ 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖) + 𝑐𝑐𝑐𝑐2 ⋅ 𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖) + 𝑐𝑐𝑐𝑐3 ⋅ 𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖) + 𝑐𝑐𝑐𝑐4 ⋅ 𝐺𝐺𝐺𝐺2(𝑖𝑖𝑖𝑖) + 𝑐𝑐𝑐𝑐5 ⋅ 𝑆𝑆𝑆𝑆2(𝑖𝑖𝑖𝑖) + 𝑊𝑊𝑊𝑊3(𝑖𝑖𝑖𝑖),

  

(28)

𝑎𝑎𝑎𝑎1 = 1 + 𝛥𝛥𝛥𝛥𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)+𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)⋅𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

− 𝛥𝛥𝛥𝛥𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)

  ;                   (17)

𝑎𝑎𝑎𝑎2 = 𝛥𝛥𝛥𝛥𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)+𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)⋅𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

  ;                              (18)

𝑎𝑎𝑎𝑎3 = −�𝛥𝛥𝛥𝛥𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)

�
2
  ;                            (19)

𝑏𝑏𝑏𝑏1 = 𝛥𝛥𝛥𝛥𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)

  ;                                     (20)

𝑏𝑏𝑏𝑏2 = 1 − 𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖)

  ; b3
 = 0;                        (21)

𝑏𝑏𝑏𝑏4 = �𝛥𝛥𝛥𝛥𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖)

�
2

  ;                                (22)

𝑏𝑏𝑏𝑏5 = −�𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖)

�
2

  ; c1
 = 0;                       (23)

𝑐𝑐𝑐𝑐2 = 𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖)

  ;                                     (24)

c3 = 1 - KS;                                    (25)

𝑐𝑐𝑐𝑐4 = �𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1)
𝐺𝐺𝐺𝐺(𝑖𝑖𝑖𝑖)

�
2
  ;                                   (26)

c5 = -KS 
2, Wn(i); (n = 1, 2, 3) – external influence.   (27)

To calculate the coefficients in equations (16), the formu-
las given in the range (17)-(27) were used. In this process, they 
relied on changes ΔP(i, i + 1), ΔG(i, i + 1), ΔS(i, i + 1), which were 
obtained by solving the system of equations (1). These chang-
es were calculated based on the observed values of P(i) and 
P(i + 1), while considering the assumptions that ΔS

*(i,  i + 1) = 
=  KSS(i), KS  ∈  [0;  1]. The continuous model took the form:

�
𝑃̇𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) = (𝑎𝑎𝑎𝑎1 − 1) ⋅ 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎2 ⋅ 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) ⋅ 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) + 𝑎𝑎𝑎𝑎3 ⋅ 𝑃𝑃𝑃𝑃2(𝑡𝑡𝑡𝑡) + 𝑊𝑊𝑊𝑊1(𝑡𝑡𝑡𝑡);
𝐺̇𝐺𝐺𝐺(𝑡𝑡𝑡𝑡) = 𝑏𝑏𝑏𝑏1 ⋅ 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏2 − 1) ⋅ 𝐺𝐺𝐺𝐺(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏3 ⋅ 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏4 ⋅ 𝑃𝑃𝑃𝑃2(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏5 ⋅ 𝐺𝐺𝐺𝐺2(𝑡𝑡𝑡𝑡) + 𝑊𝑊𝑊𝑊2(𝑡𝑡𝑡𝑡);
𝑆̇𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐1 ⋅ 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐2 ⋅ 𝐺𝐺𝐺𝐺(𝑡𝑡𝑡𝑡) + (𝑐𝑐𝑐𝑐3 − 1) ⋅ 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐4 ⋅ 𝐺𝐺𝐺𝐺2(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐5 ⋅ 𝑆𝑆𝑆𝑆2(𝑡𝑡𝑡𝑡) + 𝑊𝑊𝑊𝑊3(𝑡𝑡𝑡𝑡).

  

A nonlinear computer simulation model was created 
based on a discrete model, the parameters of which were 
calculated using experimental data presented in Table 1. 
For this purpose, the corresponding dependencies were 
used, which are defined by equations (17)-(27). Simulation 
estimation and prediction of the development over time of 
the state vector of a nonlinear discrete system describing 
changes in the content of organic matter was carried out 
on the condition that the initial parameters of the system 
were unknown, and the components of the model can vary 
up to 20% of the nominal values. The parameters of the 
continuous model were calculated based on experimen-
tal data using the corresponding dependencies defined by 
equations (17)-(27).

Results and Discussion
Analysing the work of the territorial community in the 
field of environmental monitoring, certain doubts arise 
as to how effectively the coordination and integration 
of different levels of observation – from international to 
state, local, public and departmental – is taking place. At 
the international level, there are systems for assessing the 
environmental condition specified in the Resolution of 
the Cabinet of Ministers of Ukraine No. 391 (1998), which 
operate under the leadership of such organisations as the 
United Nations, UNESCO, and UNEP. Simultaneously, at 
the local level, monitoring is carried out by various struc-
tures: state bodies, municipal services, specialised divi-
sions of the communities themselves, and industrial and 

(16)
;

;
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agricultural enterprises that conduct their own depart-
mental environmental control. Special attention should be 
paid to public monitoring, which plays an important role in 
the implementation of citizens’ right to a safe environment 
(Morshch & Savchenko, 2018; Alvarez-Risco & Del-Agui-
la-Arcentales, 2021) and helps to identify violations of en-
vironmental laws (Donnelly et al., 2014).

Due to the dispersion and lack of interaction between 
these different actors, doubts arise whether the existing sys-
tem is able to respond in a timely and comprehensive man-
ner to environmental threats, especially in the face of grow-
ing anthropogenic and military load on the environment. It 
is these challenges that highlight the urgent need to create 

a specialised decision support system (Fig. 1), which would 
be able to combine all information flows, ensure continu-
ous monitoring of sources of industrial, agro-industrial, and 
military-anthropogenic load, and assess the impact of these 
factors on the ecosystem, predict possible changes in the 
natural environment and promote rapid response to emer-
gencies (Morshch & Savchenko, 2018). Special attention was 
paid to formalising the structure of a multi-level monitoring 
system, building discrete and continuous models of the dy-
namics of organic matter reserves in terrestrial ecosystems, 
and developing recurrent algorithms for estimating param-
eters to improve the accuracy of scientific forecasts in diffi-
cult conditions of anthropogenic and military loads.

Decision maker – (DM) – chairman of the ATC (automated workplace – AWP) 

System administrator – profile deputy chairman of the ATC (AWP) 

 Input database 
Local area network (LAN)     

LMO procedures bank  Results database 

Data preparation group (AWP)
 
Functions: 
- development of a
working set of regulatory data;

- collection of data on the current 
state of the environment; 

- data analysis (environmental 
assessment, development of options 
for possible actions); 

- preparation of a working set of input 
data for the DM; 

- evaluation of the effectiveness of
possible solutions. 

Decision preparation group (AWP)
  
Functions: 
- development of action plan 
scenarios;

- modelling of the state of the 
environment for various options; 

- calculating the strategy utility 
matrix for the DM; 

- logical and mathematical 
processing (LMO) of data of an 
appropriate strategy as a "solution" 
of the DM;

- preparation of a working set of 
LMO results data based on a 
mathematical model.

Solution implementation group 
(AWP)  

Functions: 
- development of (operational) 
tasks for forces and means of 
ensuring environmental and 
anthropogenic safety;

- conducting of desktop 
modelling (training); 

- communication of the 
operational tasks of the ATC; 

- coordination of the actions of 
forces and means to fulfil the 
tasks set. 

Figure 1. General block diagram of the DSS for environmental monitoring of the environment
Source: developed by the authors

The main functions of such a decision support system 
include:

1.  Continuous monitoring of industrial anthropogen-
ic load (IAL), agro-industrial anthropogenic load (AIAL) 
and military anthropogenic load (MAL) (Chumachenko  et 
al., 2022).

2. Assessment of the physical state of the environment 
and natural processes occurring in it.

3. Forecasting changes in the environmental situation 
and assessing the potential consequences of these changes.

4. Improving the speed and quality of user information 
services at various levels of management, in accordance 
with DSTU 9001:2001 (2001).

5.  Support of the adoption of informed and scientifi-
cally balanced management decisions aimed at reducing 
emissions and discharges of harmful substances into the 
environment.

6. Ensuring safety and comfortable living conditions for 
residents of amalgamated territorial communities.

The development and further implementation of such 
an DSS is an extremely necessary step to improve the ef-
fectiveness of environmental monitoring in AHS. This will 
help to identify potential threats that may negatively af-
fect the environment in a timely manner, assess their im-
pact, and take appropriate measures to protect nature and 
public health. According to advanced approaches to system 
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ecology, for modelling biocoenoses in terrestrial ecosys-
tems, the structure of mathematical models of biotopes 
can be represented by three main species. Firstly, these are 
linear scalar equations, which can be either ordinary dif-
ferential or difference equations. They are used to describe 
the process of succession – that is, the gradual develop-
ment and change of communities of organisms over time. 
Secondly, there are linear multidimensional equations that 
can also be differential or differential. These models are 
designed to reflect the dynamics of processes in biotopes 
where anthropogenic impact is minimal or completely ab-
sent, for example, in areas free of external factors, such 
as zoocoenoses. And thirdly, nonlinear logistic equations 
are applied, which can be either differential or difference. 
They are designed specifically for modelling phenomena in 
biotopes that are exposed to significant anthropogenic or 
military loads.

These types of models are used not only to estimate the 
current state of the ecosystem, but also to simulate fore-
casting, i.e., to analyse the current state of an object and 
model its behaviour in the future (Ivanyuta & Kachynskyi, 
2012). Model parameters were estimated using the least 
squares method, which is used over a sliding time interval 
that can last up to 20 years (Dubovoy, 2012). Forecasting, 
in turn, is possible for a period of 10-12 years ahead, which 
allows assessing the potential consequences of changes in 
the system. For discrete models, the sampling period T0 is 
taken as one year. At the initial stage, several years are allo-
cated to obtain an initial approximation of the parameters, 
which ensures the accuracy of further calculations. In order 
to assess and predict the state of terrestrial ecosystems, a 
special computer simulation model was created (Fig. 2), 
which reproduces the key processes of the organic matter 
cycle in nature.

a b c 
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m 2
g

m 2
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model 
model 

m 2
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Figure 2. Results of modelling simulation estimation and forecasting of the dynamics of the state vector of a linear discrete 
system of organic matter reserves

Source:  a – green phytomass; b – litter; c – forest floor
Source: developed by the authors

Verification of the model showed that if the initial pa-
rameters are the same, the forecast error for the first and 
second years does not exceed 10% of the actual values ob-
tained during measurements. The conducted modelling 
showed that even if there are sufficiently large errors in 
the measurements of green phytomass – up to 30% – after 
four years, the error in assessing the state of all compo-
nents of the model does not exceed 10%. This indicates the 
high ability of the chosen approach to correction and ad-
aptation. In addition, it was found that all components of 
the model change in a consistent manner, regardless of the 
type of external perturbations. This result confirmed the 
expediency of focusing monitoring on green phytomass 
during its maximum growing season. With this approach, 
it is possible to obtain representative and reliable informa-
tion about the overall state of the ecosystem, even if the 
amount of data available is limited.

It is also worth noting that advanced methods of re-
mote sensing of the Earth greatly facilitate the collection 
of data on green phytomass. This makes regular monitoring 
of ecosystems more accessible and efficient, eliminating 
the need for complex and time-consuming field measure-
ments. Simulation prediction based on a continuous linear 

model and Lewinberger observers confirmed the conclu-
sions obtained for the discrete case (Fig. 3). This indicates 
the consistency of both models and the chosen approach as 
a whole, and their reliability and suitability for long-term 
forecasting of the state of terrestrial ecosystems. Compar-
ison of the simulation results with actual experimental ob-
servations showed that the error can reach approximately 
±45%, which is significantly higher than the accuracy shown 
by the linear model. A nonlinear computer simulation mod-
el was created based on a discrete model, the parameters of 
which are shown in Figure 4.

The results of a simulation experiment conducted 
using a nonlinear model together with the Lewinberger 
observer confirmed the same conclusions as previously 
obtained for the linear model. The initial values of the feed-
back matrix parameters in the observer were determined 
based on a linear model, which helped to move smoothly 
and efficiently to the application of a more complex non-
linear model. The simulation results showed high accuracy 
and reliability of this approach. Choosing between using a 
linear or nonlinear model requires a step-by-step and care-
ful approach that considers the length of the observation 
period (at least 10 years) and the amount of experimental 
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data available (Van Veen & Paul, 1981). This is necessary 
to ensure reliable identification of model parameters and 
obtain reliable results. The parameters of the continu-
ous model are illustrated in Figure 5. The results showed 
that the continuous model confirms the consistency and 

reliability of the discrete model, which emphasises the ef-
fectiveness of both approaches in reflecting the dynamics 
of the processes under study. This suggests that both mod-
els are useful tools for analysing and predicting changes in 
systems associated with organic matter reserves.

Figure 3. Results of modelling simulation estimation and forecasting  
of dynamics of organic matter reserves of a linear continuous system

Note: a – green phytomass; b – litter; c – forest floor
Source: developed by the authors

Figure 4. Results of modelling simulation estimation and forecasting  
of the dynamics of the state vector of a nonlinear discrete organic matter system

Note: a – green phytomass; b – litter; c – forest floor
Source: developed by the authors

Figure 5. Results of modelling simulation estimation and forecasting  
of the dynamics of the state vector of a nonlinear continuous organic matter system

Note: – a – green phytomass; b – litter; c – forest floor
Source: developed by the authors
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As part of this study, an integrated DSS designed for 
environmental monitoring in ATC was developed and 
tested. The key concept was to combine a variety of data 
sources – from official government resources to public and 
departmental initiatives – to ensure continuous collection 

of information on environmental impacts. The main focus 
was on tracking anthropogenic, agricultural, and military 
loads, and the ability of the system to quickly respond 
to environmental risks that arise within the community. 
Comparing the obtained data with the methods described 
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by E. Levin et al.  (2023), a significant correlation was ob-
served. Namely, they stressed the importance of imple-
menting cloud platforms, the Internet of Things, and the 
use of semantic web services. Instead, the study by B. Varer 
& V. Mokin (2025) focused on artificial intelligence, name-
ly, the use of large language models for building cognitive 
maps and modelling systems without the participation of 
experts, that is, on the analytical and predictive part of the 
DSS, especially in conditions of a lack of high-quality input 
data. These tools help to improve the flexibility, scalability, 
and integration capabilities of the system with other ad-
vanced solutions. Both in this study and in the paper by E. 
Levin et al., a similar problem was identified: difficulties in 
integrating different types of data and technologies, and a 
high dependence of the accuracy of models on the quality 
of source information. Therefore, the issue of compatibility 
and standardisation of all components of the system was 
defined as a key requirement for ensuring its performance.

Paying attention to the study by A. Bonfante  et 
al.  (2024), similar strategic approaches using geospatial 
data were observed, and the DSS architecture was designed 
on a multi-layered basis. In the proposed system, like 
A. Bonfante et al., used advanced models for predicting the 
ecological state, in particular climate algorithms. However, 
if A. Bonfante et al. focused on supporting EU authorities 
in implementing climate change adaptation policies, this 
study aimed to integrate monitoring at various levels  – 
state, local, public, and departmental – in the context of 
anthropogenic and military tensions, which is particularly 
important for Ukraine. S. Xu (2024) considered the use of 
artificial intelligence in DSS for sustainable urban develop-
ment, when adaptive models, fuzzy logic, and specialised 
algorithms were used in this study to improve the accuracy 
of diagnostics and forecasting of the environmental situ-
ation. Similarly to C. Xu, the current study confirmed that 
the quality of input data and the complexity of integration 
with the existing infrastructure remain significant obsta-
cles to the widespread use of such systems.

Separately, it is necessary to emphasised the focus on 
involving ordinary citizens in environmental monitoring 
as part of the current study. This fully correlated with the 
approaches outlined by J. Haqbeen et al. (2021). The above 
system, like the current study, contained crowdsourcing 
mechanisms and the practice of cooperation with public 
associations. This contributed to the receipt of detailed 
information, accelerated identification of problems, and 
the development of environmental consciousness among 
the population. Simultaneously, certain difficulties have 
arisen, in particular, those related to the heterogeneity and 
subjectivity of data, and the need to improve digital litera-
cy and ensure the protection of information.

Comparing the results obtained with the study by 
G. Anjum & M. Aziz (2025), it was found that both papers 
emphasised an interdisciplinary approach to environmen-
tal strategies. Attention was paid not only to technical 
aspects, but also to cognitive, social factors, and the im-
portance of scientific data and conceptual frameworks for 

improving the effectiveness of policy decisions. Similar to 
G. Anjum & M. Aziz, the problems of comprehensive sys-
tem performance assessment and the lack of convincing 
empirical data remained significant obstacles. A.J. Lynch et 
al. (2022) highlighted the key role of a flexible, situation-ori-
ented approach and iterative decision-making process in 
climate risk management. This approach was also imple-
mented in the present study: systematisation of various 
methods, considering the political, social, and cultural con-
text, and the involvement of all interested parties became 
the foundation for the development of an effective DSS.

Summing up, the study showed the effectiveness of 
the created integrated DSS for environmental supervision 
of ATC. This is fully consistent with current global prac-
tices in this area. To improve the operation of the system, 
the need to address issues of standardisation, ensuring 
the quality of information, improving digital awareness of 
users and adapting models to the specifics of each com-
munity was clarified. The experience of Ukrainian and for-
eign experts has shown that the best results are achieved 
through a combination of various scientific approaches, 
the use of advanced information technologies, and the ac-
tive involvement of the public in the process of environ-
mental monitoring, which will ultimately contribute to the 
sustainable development of territorial communities.

Conclusions
The present paper offered a scientifically based concept of 
multi-level DSS for environmental monitoring of ATC. This 
system considered the current challenges faced as a result 
of anthropogenic accidents and military operations, which 
significantly affect the state of the environment. The or-
ganisational and technical structure of the DSS was devel-
oped, which combined automated workstations, local area 
networks, cloud services, crowdsourcing platforms, sensor 
systems, and data from open sources. The use of mathe-
matical models for local monitoring of the dynamics of 
organic matter reserves with the ability to identify param-
eters even with limited data is also justified, which allows 
performing operational analysis of the state of ecosystems 
and predicting the long-term consequences of anthropo-
genic and military factors.

Simulation simulations conducted as part of the 
study demonstrated high accuracy in estimating changes 
in terrestrial ecosystems. The results also determined the 
effectiveness of management decisions aimed at reduc-
ing the negative impact on the environment. Integrating 
data from multiple sources – government, public, sensor 
networks, and crowdsourcing platforms  – increases re-
sponsiveness to environmental threats. In addition, such 
integration promotes transparency and accessibility of 
environmental information to government agencies and 
the public. An important aspect is the proven possibility 
of public involvement in environmental control through 
digital platforms, which, in turn, increases environmental 
awareness and contributes to the democratisation of the 
decision-making process.
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In the course of the study, the effectiveness of using 
recurrent algorithms for identifying model parameters was 
confirmed. This is extremely useful in cases where environ-
mental data is limited or fragmented, which is a typical prob-
lem for territorial communities, especially in times of crisis. 
The proposed methodology allows adapting decision support 
systems to the specific conditions of each territory, consider-
ing local features of the load on ecosystems, and the availa-
bility of information resources. Practical testing of the system 
at test sites has shown its ability to scale and integrate with 
existing national and international monitoring platforms.

Further research will focus on implementing artificial 
intelligence techniques to improve the accuracy of predic-
tions. It is also planned to expand the functionality of the 
decision support system for emergency risk management, 
integration with national and international monitoring 

platforms. In addition, it is planned to develop adaptive 
algorithms for analysing large amounts of environmental 
data. Further development of this system is aimed at im-
proving the effectiveness of environmental monitoring, 
ensuring timely response to environmental threats, and 
promoting scientifically sound management decisions at 
the local community level.
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Анотація. Актуальність цього дослідження зумовлена дедалі більшою необхідністю покращення 
ефективності екологічного моніторингу об’єднаних територіальних громад в умовах зростання техногенного 
та військового впливу на навколишнє середовище. Метою роботи було створення інтегрованої системи 
підтримки прийняття рішень для екологічного моніторингу, що дозволяє об’єднувати дані з різних джерел, 
здійснювати безперервний контроль за станом екосистем, прогнозувати зміни та оперативно реагувати 
на екологічні загрози. У процесі дослідження застосовано системний підхід, математичне моделювання 
динаміки екосистем, метод найменших квадратів для ідентифікації параметрів моделей на основі обмежених 
даних, а також впроваджено хмарні технології, Інтернет речей, краудсорсингові платформи та сенсорні 
мережі для збору й обробки інформації. Інтеграція даних здійснювалася з державних, громадських та 
відомчих джерел, що забезпечило комплексне охоплення різних типів навантаження на довкілля. Основними 
результатами дослідження були: розробка багаторівневої організаційної структури системи моніторингу, 
побудова дискретних і безперервних математичних моделей для оцінки та прогнозування стану екосистем, 
впровадження рекурентних алгоритмів для адаптації моделей до змін у середовищі. Система дозволила 
забезпечити постійний моніторинг промислового, агропромислового та військово-техногенного впливу, 
своєчасно виявляти потенційні загрози, оцінювати їхній вплив і приймати обґрунтовані управлінські рішення 
для зниження екологічних ризиків. Розроблена система підтримки прийняття рішень дозволяє ефективно 
управляти екологічними ризиками, сприяє підвищенню екологічної безпеки та сталому розвитку об’єднаних 
територіальних громад. Інтеграція сучасних інформаційних технологій, математичних моделей та залучення 
громадськості до процесу моніторингу створює нову парадигму екологічного управління в кризових умовах
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