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Abstract. The relevance of this study stems from the increasing complexity of industrial systems and the need to 
process large data streams in real time to ensure reliable monitoring, predict technical failures, and support decision-
making. The aim of the work was to identify typical architectural configurations of digital twins in cloud environments and 
determine how the distribution of analytical functions across architectural levels affects the efficiency of such systems in 
production settings. The research methodology was based on a critical analysis of interdisciplinary sources using content 
analysis, comparative analysis, and SWOT analysis, which enabled thematic structuring of the material according to 
architectural, algorithmic, and organisational-regulatory parameters. As a result, it was established that a multi-level 
digital twin model provides a universal foundation for describing architectures in mechanical engineering, energy, and 
automated manufacturing. Hybrid solutions that transferred part of the analytics to the edge layer offered increased 
resilience to network failures and better adaptation to changes in the technical condition of assets. It was found that 
system efficiency depended not only on the topology of computational tasks but also on the ability of analytical models to 
process streaming data, maintain accuracy amid data drift, and remain interpretable in critical decision-making contexts. 
It was shown that key barriers to implementation remained the fragmentation of approaches to functional decomposition, 
the absence of unified standards, and sensitivity to unstable interactions between components. Based on cross-industry 
comparison, a typology of digital twin architectures was developed, taking into account the nature of analytics distribution 
and its integration with cloud infrastructure. The results provide a conceptual foundation for further empirical research 
aimed at practical verification of the stability, adaptability, and scalability of digital twins in production environments

Keywords: data stream processing; simulation-based forecasting; industrial IoT systems; predictive analytics; 
hybrid infrastructure

Introduction
The need for effective management of equipment condition 
has grown due to the increasing complexity of engineering 
systems and reliance on automated components. Standard-
ised maintenance did not allow for timely responses to indi-
vidual deviations in asset behaviour. Consequently, digital 
twins have been considered as a tool for early failure predic-
tion based on simulation analytics in cloud environments. 
Their implementation is complicated by fragmented archi-
tectures, the absence of standardised synchronisation, and 
data heterogeneity, which creates methodological uncertain-
ty in deploying such systems in production environments.

Previous research has outlined a wide range of digi-
tal twin applications across various sectors, from smart 

manufacturing to urban infrastructure and healthcare. For 
instance, M. Singh et al.  (2022) conducted a cross-indus-
try analysis of digital twin implementation, emphasising 
their ability to integrate physical and virtual components 
to support decision-making. The study proposed the dig-
ital twin as an adaptive element of system management, 
yet the question of structural implementation in cloud en-
vironments remained largely unexplored. In the study by 
M. Javaid et al.  (2023), the pivotal role of digital twins in 
shaping Industry 4.0 was highlighted, with a focus on main-
tenance automation and predictive analytics. However, 
the examples provided mainly described conceptual mod-
els without verification in unstable industrial conditions. 
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Meanwhile, D. Yang et al. (2021) analysed the development 
of digital twins in industry, smart cities, and healthcare, 
highlighting problems of data fragmentation and weak in-
tegration with the Internet of Things (IoT). Despite broad 
thematic coverage, the study lacked systematic categori-
sation of architectural approaches, limiting its practical 
value for technical modelling.

Other researchers, such as T.Y.  Melesse  et al.  (2021), 
emphasised the absence of a unified data model, com-
plicating the application of digital twins in complex pro-
duction systems. Among the key challenges remained the 
formation of a single information structure capable of en-
compassing physical variables, operational data, and their 
cloud-based representation. M. Attaran & B.G. Celik (2023) 
highlighted the importance of overcoming scalability and 
cybersecurity challenges in implementing digital twins in 
cloud environments. They stressed the strategic signifi-
cance of continuous monitoring and automated system ad-
aptation, yet left unaddressed the algorithmic implemen-
tation of models amid data drift.

Some publications focused on regional implementa-
tion of digital twins. For example, Ukrainian researcher 
V. Doroshenko (2021) studied the digitalisation of found-
ry and metallurgical production, demonstrating limited 
adaptation of simulation models to specific conditions. 
In the publication by O. Boiko et al. (2024), the benefits of 
edge-cloud architectures in hybrid energy systems were 
analysed, indicating the promise of decentralised compu-
tational configurations for digital twins. Despite technical 
relevance, the study did not consider the full cycle of syn-
chronising the digital copy with the physical asset. Con-
versely, M. Bulgakov & O. Melnyk (2025) demonstrated the 
effectiveness of digital twins for forecasting and optimising 
the operation of a ship’s energy system in real time, em-
phasising the importance of aligning digital models with 
dynamic control parameters.

International discourse has also addressed key prob-
lems in digital twin architecture. S. Khan et al. (2022) point-
ed to uncertainty in the methodology for validating digital 
twin models in industrial processes. Proposed evaluation 
criteria did not cover the interaction of models with cloud 
infrastructure. In S. Ma et al. (2022), the issue of integrating 
digital twins into energy-intensive production was raised, 
where reliability and timeliness of forecasts were particu-
larly crucial. The authors stressed the need for accurate 
representation of production dynamics but did not explore 
methods to achieve this under distributed analytics.

Despite active discussion in the scientific community, 
the question of effective integration of digital twins into 
cloud computing environments for early detection of tech-
nical failures in industrial systems remained unresolved. 
Existing approaches did not cover the full interaction cy-
cle between the digital model, sensor infrastructure, and 
data processing tools, complicating practical use in com-
plex production environments. This highlighted the need 
for research aimed at identifying technological prerequi-
sites and limitations for applying digital twins in cloud  

environments to model and predict industrial failures. The 
aim of this study was to comprehensively analyse digital twin 
architectures in cloud environments, focusing on the distri-
bution of analytical functions across system levels and their 
impact on the efficiency of predicting technical failures.

Materials and Methods
The methodological basis of the study was founded on a 
critical analysis of interdisciplinary literature concerning 
cloud implementation of digital twins in industry. The 
research was theoretical in nature and aimed to create a 
generalised conceptual framework by comparing techni-
cal approaches presented in current scientific and applied 
analytics. Particular attention was paid to the interaction 
of digital models with IoT infrastructure, data stream pro-
cessing, artificial intelligence (AI), as well as system adapt-
ability and scalability.

The source base included 44 documents: peer-reviewed 
journal articles, review publications, industry reports from 
leading technology companie such as Siemens (2023), offi-
cial documentation for industrial solutions including Az-
ure Digital Twins and AWS IoT Greengrass, and regulatory 
documents such as ISO No. 23247-1 (2021), ISO No. 23247-
2 (2021), and IEC No. 62890:2020 (2020). Sources were se-
lected based on their relevance to cloud-based digital twins, 
the presence of structured descriptions of architectures, 
algorithms, or application scenarios, publication period 
(2020-2025), and verified scientific or technical credibility.

The analysis was conducted in several stages. Initially, 
texts were coded according to themes: architecture, algo-
rithms, industrial context, and implementation challeng-
es. In the second stage, thematic content analysis was ap-
plied, examining each document according to a three-level 
structural grid: architectural level  – structure of digital 
twins, data processing methods, placement of computa-
tional nodes; algorithmic level – classification, forecasting, 
anomaly detection methods, computational requirements, 
and cloud infrastructure compatibility; organisational 
level – scaling barriers, cybersecurity, managerial trust in 
models, regulatory compliance. Analysis was performed 
manually using Google Sheets and Miro for building com-
parison matrices. Each source element was tagged accord-
ing to: source type, technical focus, relevance to cloud 
themes, and application sector. Structured data allowed 
identification of recurring implementation patterns for 
digital twins and clarified interconnections between archi-
tecture, algorithms, and application conditions.

Systematic comparison of sources using standardised 
criteria and content coding enabled quantitative counting 
of references to specific architectures, functional compo-
nents, and application sectors. Comparative evaluation of 
architecture performance was based on aggregated data 
regarding effectiveness in applied scenarios, consider-
ing cloud tool configurations, algorithm adaptability, and 
industrial requirements. SWOT (Strengths, Weaknesses, 
Opportunities, Threats) analysis of analytical algorithms 
was built on identified technical characteristics and  
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limitations, taking into account computational complexity, 
interpretability, and resilience to data changes. To ensure 
internal reliability, cross-validation was conducted: mod-
els mentioned in at least three independent sources were 
marked as stable. Conflicting or rarely described solutions 
were additionally checked for compliance in other docu-
ments or cross-industry analyses, preventing overestima-
tion of unique solutions with limited applicability.

Functional decomposition of digital twin architecture 
served as a logic for classifying material. Sensor, logical, an-
alytical, and interface levels were studied separately, focus-
ing on their integration in cloud infrastructure. Dependen-
cies between task types (forecasting, classification, anomaly 
detection) and resource requirements (latency, computa-
tional power, fault tolerance) were clarified in parallel. A 
limitation of the study was the absence of empirical model 
verification: all analytical conclusions were derived from 
secondary sources. This imparts a conceptual nature to the 
results, which require further validation in applied settings.

Results
Content analysis of architectural approaches to digital 
twins. The deployment of digital twins in industrial sys-
tems using cloud technologies can follow various architec-
tural approaches, which influence the functionality, adapt-
ability, and scalability of the digital model (Siemens, 2023). 
The choice between centralised, distributed, or hybrid 

models depends on the nature of production processes, the 
volume and frequency of data flow, and the requirements 
for processing speed. In centralised architectures, which 
traditionally rely on full data processing in the cloud, there 
was a tendency for increased latency in information ex-
change between the physical object and its digital replica. 
In such cases, modelling layers – from data collection to 
analytics  – were concentrated in remote infrastructure, 
providing high computational power but placing additional 
demands on network reliability (Rovere et al., 2022).

Hybrid models, combining edge, fog, and cloud func-
tionalities, proved to be more flexible and suitable for 
adaptation in industrial environments. Critical signal 
processing occurred at the edge, reducing latency, while 
the cloud served as a platform for long-term storage and 
analytics. This load distribution helped reduce traffic and 
improve system fault tolerance. Some models also envis-
aged delegating part of the computations to local nodes, 
with aggregated results subsequently transmitted to the 
cloud (Borghesi et al., 2021). However, implementing such 
architectures complicated synchronisation between layers, 
updating digital replicas, and coordinating local and glob-
al forecasts, while also requiring consistency in visualised 
data, which could hinder result interpretation. For a clearer 
understanding of the functional characteristics of each ar-
chitecture, a comparative diagram of their main elements 
is presented below (Fig. 1).

CENTRALISED

Sensors

Data transmission

Cloud: analytics, storage, 
management

User interface

HYBRID

Sensors

Edge: filtering, basic 
analytics

Fog: aggregation, 
adaptation

Cloud: simulations, 
storage, long-term 

forecasting

User interface

FOG/EDGE-BASED

Sensors

Edge: full analytics, 
autonomous control

Fog: coordination, short-
term forecasting

Cloud: backup / nalytical 
archivinga

User interface

Figure 1. Structural differences of three digital twin architectures in a cloud environment
Source: compiled by the author

The main distinction between approaches lies in the 
degree of localisation of computational processes and 
the speed of feedback, which directly affects the flexibili-
ty, processing latency, and fault tolerance of digital twins. 
The multi-layered structure of industrial digital twin ar-
chitectures typically included sensory, logical, analytical, 
and interface layers, each with a defined functional role 
(Siemens, 2023). The sensory layer collected primary sig-
nals, the logical layer handled filtering and preliminary 
processing, the analytical layer built simulation models 

and assessed risks, and the interface layer provided out-
put and interaction with control systems. However, several 
concepts showed ambiguity regarding the clear differentia-
tion of these layers, which manifested in varying interpre-
tations depending on the architectural configuration and 
cloud model features (Onaji et al., 2022). This highlighted 
the importance of ensuring coherence between function-
al modules of the digital twin, especially in the context of 
scaling, synchronisation, and integration with the physi-
cal environment. Establishing robust interaction between  
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layers remained a critical factor in overall system effective-
ness. Table 1 summarised the data obtained from literature 

analysis regarding the structural and functional parame-
ters of digital twins implemented using cloud technologies.

Figure 2. Distribution of digital twin publications  
by application sector as of 2024

Source: compiled by the author based on C. Dilmegani (2025)

Note: ML – machine learning
Source: compiled by the author

Table 1. Quantitative distribution of key architectural decisions and functions of digital twins
Criterion Category Number of mentions

Architecture

Hybrid 14
Cloud-only 20
Edge-only 13
Fog/other 6

System levels
2-layer 3
3-layer 8

4-layer/multilayer 15

Functional components

Real-time data 28
Analytics (AI/ML) 33

Simulations 31
Model synchronisation 14

Cloud-oriented architectures received the highest fre-
quency of mentions, which may indicate the historical domi-
nance of the centralised approach in the early stages of digital 
twin deployment. This preference was likely due to the stabil-
ity, scalability, and relative ease of implementation of cloud 
infrastructure compared to more complex hybrid or edge 
solutions. At the same time, the relatively high frequency of 
mentions of edge architectures, as well as the presence of fog 
and hybrid approaches, points to the gradual evolution of ar-
chitectural strategies towards decentralisation and localised 
computation. This evolution likely stems from the technolog-
ical need to minimise data processing latency and ensure rap-
id feedback, particularly in time-critical production scenarios.

Regarding system structure, the prevalence of multi-
layer architectures reflected the need for specialised distri-
bution of functions across sensory, logical, analytical, and 
interface layers. Such organisation increased modularity 
and flexibility but also created challenges related to data 
integration and synchronisation between layers. The func-
tional distribution showed clear dominance of simulation 
and analytical modules, confirming the orientation of dig-
ital twins towards modelling complex scenarios and failure 
prediction. Meanwhile, less frequent mention of synchro-
nisation mechanisms between physical and digital objects 
may indicate both the technical difficulty of implementing 
this function and the theoretical underdevelopment of is-
sues related to real-time model consistency.

The reviewed approaches emphasised the importance 
of aligning the update frequency of the digital replica with 
the dynamics of the physical object. Considerable variability 
was found in update rates, ranging from periodic data col-
lection to near real-time synchronisation. In practice, this 
introduced risks of predictive errors, particularly when there 
was a delay between the actual state of the object and its 
digital counterpart (Jia et al., 2022). Implementing bidirec-
tional interaction, where analytical results affect the phys-
ical process, required high reliability, action logging, and 
verification of permissible automated interventions. Some 
conceptual models also considered behavioural scenarios of 

changes in the production environment and the role of the 
user in the interaction cycle with the digital twin (Kuo et 
al., 2021). These approaches envisaged flexible interfaces, 
communication layers, and adaptive logic, which, combined 
with modularity principles, increased system scalability. 
This is especially important for technical diagnostics and 
real-time failure prediction in industrial environments.

Thus, architectural approaches to implementing digi-
tal twins in a cloud environment demonstrated significant 
diversity at both structural and functional levels. Variabili-
ty in model selection and integration with physical objects 
highlighted the need for adaptive solutions capable of ac-
counting for the contextual conditions of production. At 
the same time, methodological uncertainty remained re-
garding standardisation of synchronisation principles, load 
distribution, and consistency between layers.

Comparative effectiveness of digital twins in ap-
plied sectors. A review of publications on digital twins re-
vealed a concentration of research in six key sectors: urban 
environments, manufacturing, engineering, automotive, 
aerospace, and medicine. As shown in Figure 2, the larg-
est share of publications focused on urban scenarios (47%), 
while other sectors showed lower activity: manufacturing – 
17%, engineering – 12%, automotive – 8%, and aerospace 
and medicine – 1% each.

17.00%

12.00%

8.00%

1.00%47.00%

14.00%

1.00%

Manufacturing
Engineering
Automotive
Aerospace
Urban
Reviews
Medicine
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The greatest attention was on urban applications, en-
compassing smart city concepts, energy networks, trans-
port infrastructure, and digital modelling of complex so-
cio-technical systems. In this context, digital twins were 
used to monitor critical objects (transformers, power units, 
sewage systems, road interchanges) and manage their 
operation in real time. Models were implemented for in-
frastructure degradation prediction, traffic simulation, 
anomaly detection in loads, and emergency response sce-
nario modelling. In highly inertial urban systems, long-
term time series were predominantly used, requiring cloud 
processing of large historical datasets (Yu  et al.,  2022). 
Critical components, however, required partial offloading 
of computations to the edge to minimise latency.

In the manufacturing sector, digital twins were primar-
ily used to optimise automated lines, control robotic units, 
and improve process accuracy in high-precision engineer-
ing. Sensor monitoring included load, rotational speed, vi-
brations, and other mechanical activity indicators (Can & 
Turkmen, 2023). The focus was on detecting deviations in 
drive and actuator performance and generating forecasts 
for preventive maintenance. Hybrid architectures, in which 
preliminary analytics were performed locally and aggregat-
ed data sent to the cloud for long-term simulations, proved 
effective. However, coordination issues between layers 
sometimes reduced the stability of digital model updates.

In engineering, covering complex objects with long 
lifecycles (e.g., bridges, dams, turbines), digital twins en-
abled analysis of structural loads, deformations, vibration 
resonances, and other physical characteristics. Research 
primarily focused on static and semi-dynamic scenarios, 
allowing identification of wear processes. Accurate simu-
lations facilitated predictions of residual object life and  

reconstruction feasibility. Cloud services were mainly 
used for data accumulation and scenario modelling, while 
real-time processing was not critical. The automotive 
sector used digital twins to monitor vehicle components, 
including engines, braking systems, batteries, and naviga-
tion systems. This domain combined real-time process-
ing with high-frequency data updates, complicating the 
balance between local computations and cloud analytics. 
Early failure detection algorithms and assessments of op-
erating conditions’ impact on vehicle health were widely 
applied. Network limitations and issues with standardis-
ing data formats across digital twin components compli-
cated practical deployment.

Although the aerospace industry accounted for a 
small share of mentions, it demonstrated high technical 
complexity in digital models. Research showed the use of 
high-precision simulation models synchronised with flight 
parameters, navigation, and structural loads. Due to strict 
reliability and accuracy requirements, specialised cloud 
environments were used for deep data processing and 
post-mission analysis (Moenck et al., 2024). However, the 
complexity of synchronisation and high implementation 
costs limited large-scale real-time deployment.

Medicine accounted for the smallest share among ap-
plied sectors. Digital twins were used for virtual modelling 
of physiological processes, simulating treatment responses, 
and analysing biomechanical structures. Due to high data 
individualisation and confidentiality requirements, most 
computations occurred in secure environments with lim-
ited cloud access. This complicated scalability but ensured 
patient-level accuracy. Architectural solutions, typical data 
sources, and key performance indicators were analysed for 
each sector, with summary results presented in Table  2.

Sector Typical architecture Data sources Performance indicators

Urban Cloud + Fog Transport flows, 
energy consumption

10-15% reduction in energy use, 25% improvement in load 
forecasting, 15-18% increase in urban service efficiency.

Manufacturing Edge + Cloud Vibration, load, noise 25-30% reduction in downtime, 20-25% increase in overall 
productivity, 10-12% energy savings.

Engineering Cloud
Computer-aided 
design models, 

simulations

35% reduction in design errors, 15-20% shorter development time, 
18-20% improved parameter estimation accuracy.

Automotive Edge + Cloud Vibration, 
temperature, load

20% improvement in technical diagnostics, 18% maintenance cost 
reduction, 10-15% extended service intervals.

Aerospace Cloud Flight sensors, 
acoustic analysis

30-40% improved predictive accuracy, 20-25% reduction in failure 
risk, 15-20% faster processing of critical signals.

Medicine Cloud Imaging, patient 
biosignals

15% increased diagnostic accuracy, 10-12% shorter preparation 
time for interventions, 8-10% reduced procedural complication risk.

Table 2. Features of digital twin applications in different sectors

Source: compiled by the author based on W. Yu et al. (2022), O. Can & A. Turkmen (2023), R.D. D’Amico et al. (2023), K. Moenck et 
al. (2024)

Comparative analysis showed that digital twin per-
formance largely depended on the production environ-
ment, types of signals processed, and time-criticality of 
responses. These systems were most effective where data 
was structured, communication channels were stable, and 
operations were highly repetitive. Cloud technologies en-
sured scalability and historical data storage but required 

architectural adaptation to sector-specific conditions: edge 
solutions prevailed in highly dynamic environments such 
as aviation and automotive industries, while a centralised 
cloud approach was appropriate for urban systems and 
medicine. Therefore, digital twin deployment strategies 
needed to account for both technical and organisational 
parameters of each sector.
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SWOT analysis of digital twins in cloud infrastruc-
ture. In deploying digital twins in cloud environments, an-
alytical algorithms played a key role in providing functional 
system value. They enabled automated anomaly detection, 
technical failure forecasting, and data-driven decision 
support from industrial objects. A SWOT analysis of these 
algorithms was conducted to outline development oppor-
tunities and potential threats in cloud deployment (Fig. 3).

Figure 3. SWOT analysis  
of cloud-based digital twin technology in industry

Source: compiled by the author

Strengths

Flexible scalability of 
cloud infrastructure.

Possibility of integration 
with AI/ML for 

forecasting.

Centralised access to 
simulations and analytics.

Weaknesses

Dependence on network 
connection stability.

High cybersecurity 
requirements.

Methodological 
uncertainty 

in model verification.

Opportunities

Automation 
of maintenance and 

repairs.

Development 
of edge/fog components to 

reduce latency.

Integration with digital 
data exchange platforms.

Threats

Instability of the regulatory 
framework.

Limited compatibility with 
existing IT systems.

High competition 
among solution providers.

Among strengths, algorithms’ ability to process large 
volumes of multi-sensor data in the cloud was highlighted. 
This capability combined high-performance modern com-
puting architectures with parallel processing of information 
streams from heterogeneous sources. Methods such as Ran-
dom Forest, Support Vector Machines, or Long Short-Term 
Memory (LSTM) provided sufficient accuracy and scalabil-
ity for specific tasks, such as fault classification, technical 
degradation forecasting, or anomaly detection in streaming 
signals. Random Forest was effective with large feature sets 
and complex non-linear relationships, while LSTM models 
facilitated time-series prediction accounting for long-term 
dependencies between object states (Gao  et al.,  2023).

A particular advantage was the ability to integrate with 
IoT infrastructure, allowing data processing in a near re-
al-time mode without the need for intermediate storage on 
central servers. This enhanced the adaptability of systems 
to rapid changes in the technical state of assets, which is 
critically important in high-dynamic industrial environ-
ments (Hu et al., 2021; Liu et al., 2025). Additionally, algo-
rithmic solutions employed by digital twins reduced reli-
ance on traditional maintenance methods, shifting towards 
models based on the actual condition of equipment. An-
other efficiency factor was the availability of cloud-based 
model lifecycle management tools, such as Azure Machine 

Learning or Amazon SageMaker, which automated process-
es for training, validation, versioning, and deployment of 
analytical models. In combination with cloud infrastruc-
ture, these tools enabled centralised monitoring of model 
performance and continuous analytics improvement via 
AutoML mechanisms. Such platforms also facilitated the 
implementation of continuous integration/continuous de-
ployment practices in industrial data processing, increas-
ing the stability and reliability of digital twin systems in 
operational environments.

At the same time, several weaknesses were identified. 
A primary issue remained the dependence of model per-
formance on the type of data and the specific task. Deci-
sion tree models, particularly Random Forest, exhibited 
decreased accuracy when faced with strong class imbal-
ance, a common feature of real-world technical processes 
where failures occur far less frequently than normal opera-
tion (Liang et al., 2022). Under such conditions, algorithms 
tended to focus on the dominant class, ignoring atypical 
or critical scenarios. Techniques such as synthetic minority 
oversampling or adaptive reweighting partially mitigated 
this issue but simultaneously increased model complexi-
ty and processing time. LSTM models, used for time series 
analysis, were resource-intensive. Their effective training 
required large volumes of historical data, powerful com-
putational infrastructure, and long convergence times. 
In cloud environments, these requirements could lead to 
higher processing costs, increased prediction latency, or 
even the need to simplify model architecture at the ex-
pense of accuracy. Real-time LSTM applications often re-
quired data aggregation or down-sampling, limiting their 
suitability for highly dynamic assets.

Data drift  – gradual changes in feature distribu-
tions or dependencies in sensor streams due to equip-
ment wear, environmental changes, or system upgrades – 
posed a further threat. Model performance could degrade 
even if the formal structure of input data remained un-
changed  (Cai  et  al.,  2022). This necessitated mechanisms 
for continuous performance monitoring, periodic retrain-
ing, or dynamic parameter adaptation. However, such prac-
tices complicated the analytical component’s operation, 
increased technical support requirements, and demanded 
clearly regulated quality-check procedures post-update. 
Analysis revealed opportunities to enhance algorithm effi-
ciency, particularly in adaptability, scalability, and complex 
data stream processing. One promising approach was the 
use of ensemble systems that combined multiple model 
types to improve resilience to noisy or heterogeneous data. 
This method compensated for the limitations of individual 
algorithms through collective interaction, reducing over-
fitting risks and improving result accuracy.

Another promising direction was the implementa-
tion of stream analytics via specialised platforms such 
as Apache Flink, Apache Kafka Streams, or Azure Stream 
Analytics. These platforms enabled real-time sensor data 
processing without prior storage, improving system re-
sponsiveness to critical deviations. Extending these  
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systems’ functionality through integration with ML librar-
ies allowed not only basic filtering and aggregation but also 
complex classification, clustering, and anomaly detection 
within the data stream. Additional opportunities included 
self-learning or adaptive models capable of automatically 
adjusting to changing operating conditions without man-
ual retraining. Such models, based on online learning or 
evolutionary algorithms, could modify their structure or 
weights in response to data drift, operational mode chang-
es, or new signal types (Lugaresi  et al.,  2023). This pre-
served analytical relevance in dynamic environments and 
reduced the technical staff’s workload. Adaptive strategies 
also increased model resilience to sudden changes, such as 
equipment upgrades or the introduction of new elements 
into the production process.

Nonetheless, threats affecting system stability, re-
liability, and security remained. Cybersecurity was a key 
concern: the openness of cloud interfaces, complex access 
structures, and multi-stage data processing created con-
ditions for potential attacks (de Azambuja  et al.,  2024). 
Threats included both unauthorised access to models and 
tampering with input or output data, both of which distort-
ed analytics results. Particularly dangerous were data poi-
soning and model inversion attacks, where models trained 
on corrupted datasets could reveal confidential informa-
tion. Inadequate environment segmentation or absence of 
multi-level authentication increased risks of compromis-
ing the entire digital twin system.

Challenges also arose in validating and verifying mod-
els operating on multi-source data streams. In cloud en-
vironments, sensor sources could differ in format, update 
frequency, latency, and accuracy, complicating consistency 
between input data and the digital representation of phys-
ical processes. Determining acceptable error margins was 
particularly difficult in critical sectors, where even minor 
deviations could lead to incorrect decisions (Plageras & 
Psannis, 2022). The opacity of complex models, especially 
neural networks, further complicated monitoring and en-
sured alignment with real-world asset states.

Thus, the effectiveness of cloud-deployed digital twin 
analytics depended on their ability to adapt to specific in-
dustrial requirements, maintain a balance between accu-
racy, interpretability, and computational complexity, and 
integrate with cloud-based model lifecycle management 
tools. Assessment showed that no single existing technolo-
gy offered a universal solution, yet their combination – guid-
ed by modularity, adaptability, and automation – opened 
new prospects for industrial digital twin development.

Discussion
The study systematised architectural, sectoral, and algo-
rithmic features of digital twin implementation in cloud 
environments for predicting technical failures. Patterns 
observed confirmed the absence of a universal deployment 
model; architecture, analytical methods, and integration 
tools depended heavily on the industrial context. Inter-
action between IoT, cloud computing, and AI models was  

particularly relevant, forming the backbone of next-genera-
tion intelligent analytics systems. This aligns with R.S. Ken-
ett & J. Bortman (2022), who viewed digital twins not as iso-
lated components but as part of an integrated quality and 
reliability management ecosystem, focused on context-de-
pendent analytics. The effectiveness of digital twins depends 
not only on model accuracy but also on their integration with 
production logic, representation of current asset states, and 
dynamic response to internal and external disturbances.

Industry scenario analysis corroborated R.  Gonzá 
lez-Herbón  et al.  (2024), emphasising that digital twin 
structures must adapt to the physical object type, sensor 
load, and decision-making cycles. In highly automated 
sectors, digital twins must cover both monitoring and ac-
tive process management. Three primary architectural ap-
proaches were identified, each relevant predominantly to 
a specific task type, highlighting that no architecture can 
claim universality without losing adaptability or efficiency. 
Among analytical methods, those balancing prediction ac-
curacy, response time, and computational cost were most 
effective. This aligns with S. Attaran et al. (2024), who em-
phasised that intelligent flexibility and cloud scalability 
determine digital twin performance in Industry 4.0. The 
ability to scale, adapt to rapidly growing data streams, and 
leverage AI components was key to successful digital enter-
prise implementation. Systems using stream processing of 
IoT data responded best to failures and anomalies.

Detailed analysis of digital twin architectures con-
firmed findings by C. Stergiou & K. Psannis (2022) on the 
critical role of cloud environments in managing large data 
volumes. Their three-tier model was considered optimal for 
heterogeneous data streams in distributed systems. Results 
showed practical efficiency: the edge tier allowed rapid sig-
nal filtering and preprocessing, while the cloud aggregat-
ed, stored, and analysed data. This reduced communication 
load and improved resilience to latency and data loss. Co-
ordination complexity and the need for model standardisa-
tion aligned with the authors’ discussion of configuration 
management challenges in heterogeneous environments.

Trust in digital twin analytics remained a critical factor 
(Kamble et al., 2022). Lack of transparent validation, audit 
complexity, and opacity of deep models, including LSTMs 
or autoencoders, constrained their adoption in critical in-
dustrial contexts. When models required not only accurate 
predictions but also explainable decisions, AI opacity was a 
barrier. Data drift requiring frequent retraining posed addi-
tional challenges, often infeasible in real time without halt-
ing critical functions, reducing operator trust and adaptive 
management applicability. Integration of deep learning 
improved recognition of complex patterns and degradation 
forecasting (Lee et al., 2020), but required careful control 
of infrastructure. This study confirmed that LSTM-based 
architectures’ performance depended on stable access 
to cloud resources capable of scalable training. Network 
bandwidth fluctuations or absence of adaptive scaling led 
to decreased efficiency or delayed responses, negating high 
accuracy advantages. Similar conclusions were reached by 
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T. Savchuk & A. Kozachuk (2015), who proposed an auto-
mated decision-making algorithm for cloud application 
scaling based on reactive rules and an efficiency evaluation 
function. Their approach emphasised the need to balance 
infrastructure cost and user retention under variable loads, 
which directly supports the premise that adaptive scaling 
mechanisms are essential for maintaining digital twin re-
sponsiveness in dynamic industrial environments.

Analytical methods for unsupervised anomaly detec-
tion were significant, as noted by A. Ucar et al. (2024), who 
highlighted autoencoders’ potential in predictive mainte-
nance. This study confirmed their effectiveness in distrib-
uted IoT systems with limited labelled data, though their 
sensitivity to operational variability and input changes 
posed challenges for long-term cloud-based performance. 
Comparing architectures with predictive efficiency allowed 
analytical generalisations regarding digital twin suitability 
in various industries. D. Zhong et al.  (2023) found digital 
twins most effective in predictable or repetitive scenarios, 
allowing standardisation of behaviour and creation of nor-
mal operation templates. This aligns with findings in ener-
gy and mechanical engineering sectors, where digital mod-
els were more stable and less sensitive to update frequency. 
Dynamic environments required complex simulations and 
high update rates (Alshathri et al., 2023).

Stream analytics approaches in this study align with 
Y. You et al. (2022), emphasising continuous sensor signal 
processing for timely anomaly detection. In short-lived or 
unexpected disturbances, periodic data collection may be 
insufficient. Integrating real-time stream analytics is cru-
cial for effective digital twin response to technical state 
changes. Dynamic balancing between edge, fog, and cloud 
tiers was observed, consistent with Y.  Wang  et al.  (2023) 
cooperative computing model, automating resource coor-
dination based on network status, system load, and signal 
priority. This is suitable for complex industrial scenarios 
with uneven loads and unpredictable disturbances.

Overall, results align with contemporary scientif-
ic trends in digital twins and clarify important aspects of 
cloud implementation. Combining IoT sensors, stream 
analytics, flexible AI algorithms, and adaptive architec-
tures creates potential for new tools supporting industri-
al system technical states. These findings highlighted the 
shift toward predictive and self-optimising infrastructures, 
where digital twins not only reflect real-time operational 
data but also enable proactive decision-making. Such an 
approach enhances system reliability, reduces mainte-
nance costs, and fosters sustainable industrial innovation.

Conclusions
The study systematised key architectural approaches for 
cloud-based digital twins and generalised their structure 
through a four-tier model. In most technical scenarios, sys-
tem effectiveness depended on the analytical tier’s ability 
to interact with real-time data, maintain low processing 
latency, and adapt simulation parameters to dynamic op-
erating conditions. Literature analysis showed that inter-
action between edge and cloud components is critical for 
both responsiveness and long-term predictive capability. 
Functional decomposition into sensor, logical, analytical, 
and interface tiers is a universal framework applied across 
industries. Comparative analysis indicated that distributed 
analytics, with part of data processing at the edge, provided 
greater resilience to network failures and reduced cloud in-
frastructure load. Centralised components remained neces-
sary for adaptive long-term forecasting based on historical 
data. Cloud interaction failures created risks of critical laten-
cy, particularly with high-frequency data updates, limiting 
real-time digital twin applicability without local buffering. 

Current approaches showed ambiguity in function al-
location across architectural tiers. Analytical tasks were 
sometimes offloaded to the logical tier or duplicated at edge 
and cloud levels, indicating a lack of unified functional de-
composition principles. In-depth analysis of the analytical 
component clarified technical and methodological features 
of commonly used algorithms, considering advantages and 
limitations in cloud environments. Algorithm effectiveness 
depended on input data type, IoT infrastructure configura-
tion, and resource constraints. Low model interpretability, 
high computational costs, and sensitivity to data drift re-
mained barriers to large-scale deployment. However, identi-
fied opportunities offered paths to improve digital twin reli-
ability, scalability, and flexibility in industrial environments. 
Future research should leverage empirical data to verify 
identified digital twin architectures in real industrial set-
tings. Particular attention is required for testing cloud syn-
chronisation mechanisms and scalability of analytical mod-
ules under dynamic changes in asset technical conditions.
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Хмарні цифрові двійники:  
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Анотація. Актуальність дослідження зумовлена зростанням складності промислових систем і необхідністю 
обробки великих потоків даних у реальному часі для забезпечення надійного моніторингу, прогнозування 
технічних збоїв і підтримки прийняття рішень. Метою роботи було ідентифікувати типові архітектурні 
конфігурації цифрових двійників у хмарному середовищі та визначити, як розподіл аналітичних функцій 
між архітектурними рівнями впливає на ефективність таких систем у виробничих умовах. Методологія 
дослідження ґрунтувалася на критичному аналізі міждисциплінарних джерел із застосуванням контент-аналізу, 
порівняльного аналізу та SWOT-аналізу, що дозволило здійснити тематичне структурування матеріалу за 
архітектурними, алгоритмічними та організаційно-нормативними параметрами. У результаті встановлено, що 
багаторівнева модель цифрового двійника є універсальною основою для опису архітектур у машинобудуванні, 
енергетиці й автоматизованому виробництві. Гібридні рішення з перенесенням частини аналітики на edge-
рівень забезпечували підвищену стійкість до мережевих збоїв і кращу адаптацію до змін технічного стану 
об’єктів. Виявлено, що ефективність систем залежала не лише від топології обчислювальних задач, а й від 
здатності аналітичних моделей обробляти потокові дані, зберігати точність при дрейфі даних і залишатися 
інтерпретованими в умовах критичних рішень. Показано, що ключовими бар’єрами реалізації залишалися 
фрагментарність підходів до функціональної декомпозиції, відсутність єдиних стандартів та чутливість до 
нестабільної взаємодії між компонентами. На основі міжгалузевого зіставлення сформовано типологію архітектур 
цифрових двійників, що враховує характер розподілу аналітики та її інтеграцію з хмарною інфраструктурою. 
Отримані результати становлять концептуальну основу для подальших емпіричних досліджень, спрямованих на 
практичну верифікацію стабільності, адаптивності й масштабованості цифрових двійників у виробничих умовах

Ключові слова: потокова обробка даних; симуляційне прогнозування; виробничі IoT-системи; прогнозна 
аналітика; гібридна інфраструктура
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