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Abstract. The relevance of this study stems from the increasing complexity of industrial systems and the need to
process large data streams in real time to ensure reliable monitoring, predict technical failures, and support decision-
making. The aim of the work was to identify typical architectural configurations of digital twins in cloud environments and
determine how the distribution of analytical functions across architectural levels affects the efficiency of such systems in
production settings. The research methodology was based on a critical analysis of interdisciplinary sources using content
analysis, comparative analysis, and SWOT analysis, which enabled thematic structuring of the material according to
architectural, algorithmic, and organisational-regulatory parameters. As a result, it was established that a multi-level
digital twin model provides a universal foundation for describing architectures in mechanical engineering, energy, and
automated manufacturing. Hybrid solutions that transferred part of the analytics to the edge layer offered increased
resilience to network failures and better adaptation to changes in the technical condition of assets. It was found that
system efficiency depended not only on the topology of computational tasks but also on the ability of analytical models to
process streaming data, maintain accuracy amid data drift, and remain interpretable in critical decision-making contexts.
It was shown that key barriers to implementation remained the fragmentation of approaches to functional decomposition,
the absence of unified standards, and sensitivity to unstable interactions between components. Based on cross-industry
comparison, a typology of digital twin architectures was developed, taking into account the nature of analytics distribution
and its integration with cloud infrastructure. The results provide a conceptual foundation for further empirical research
aimed at practical verification of the stability, adaptability, and scalability of digital twins in production environments

Keywords: data stream processing; simulation-based forecasting; industrial IoT systems; predictive analytics;
hybrid infrastructure

Introduction

The need for effective management of equipment condition
has grown due to the increasing complexity of engineering
systems and reliance on automated components. Standard-
ised maintenance did not allow for timely responses to indi-
vidual deviations in asset behaviour. Consequently, digital
twins have been considered as a tool for early failure predic-
tion based on simulation analytics in cloud environments.
Their implementation is complicated by fragmented archi-
tectures, the absence of standardised synchronisation, and
dataheterogeneity,whichcreatesmethodological uncertain-
ty in deploying such systems in production environments.

Previous research has outlined a wide range of digi-
tal twin applications across various sectors, from smart

manufacturing to urban infrastructure and healthcare. For
instance, M. Singh et al. (2022) conducted a cross-indus-
try analysis of digital twin implementation, emphasising
their ability to integrate physical and virtual components
to support decision-making. The study proposed the dig-
ital twin as an adaptive element of system management,
yet the question of structural implementation in cloud en-
vironments remained largely unexplored. In the study by
M. Javaid et al. (2023), the pivotal role of digital twins in
shaping Industry 4.0 was highlighted, with a focus on main-
tenance automation and predictive analytics. However,
the examples provided mainly described conceptual mod-
els without verification in unstable industrial conditions.
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Meanwhile, D. Yang et al. (2021) analysed the development
of digital twins in industry, smart cities, and healthcare,
highlighting problems of data fragmentation and weak in-
tegration with the Internet of Things (IoT). Despite broad
thematic coverage, the study lacked systematic categori-
sation of architectural approaches, limiting its practical
value for technical modelling.

Other researchers, such as T.Y. Melesse et al. (2021),
emphasised the absence of a unified data model, com-
plicating the application of digital twins in complex pro-
duction systems. Among the key challenges remained the
formation of a single information structure capable of en-
compassing physical variables, operational data, and their
cloud-based representation. M. Attaran & B.G. Celik (2023)
highlighted the importance of overcoming scalability and
cybersecurity challenges in implementing digital twins in
cloud environments. They stressed the strategic signifi-
cance of continuous monitoring and automated system ad-
aptation, yet left unaddressed the algorithmic implemen-
tation of models amid data drift.

Some publications focused on regional implementa-
tion of digital twins. For example, Ukrainian researcher
V. Doroshenko (2021) studied the digitalisation of found-
ry and metallurgical production, demonstrating limited
adaptation of simulation models to specific conditions.
In the publication by O. Boiko et al. (2024), the benefits of
edge-cloud architectures in hybrid energy systems were
analysed, indicating the promise of decentralised compu-
tational configurations for digital twins. Despite technical
relevance, the study did not consider the full cycle of syn-
chronising the digital copy with the physical asset. Con-
versely, M. Bulgakov & O. Melnyk (2025) demonstrated the
effectiveness of digital twins for forecasting and optimising
the operation of a ship’s energy system in real time, em-
phasising the importance of aligning digital models with
dynamic control parameters.

International discourse has also addressed key prob-
lems in digital twin architecture. S. Khan et al. (2022) point-
ed to uncertainty in the methodology for validating digital
twin models in industrial processes. Proposed evaluation
criteria did not cover the interaction of models with cloud
infrastructure. In S. Ma et al. (2022), the issue of integrating
digital twins into energy-intensive production was raised,
where reliability and timeliness of forecasts were particu-
larly crucial. The authors stressed the need for accurate
representation of production dynamics but did not explore
methods to achieve this under distributed analytics.

Despite active discussion in the scientific community,
the question of effective integration of digital twins into
cloud computing environments for early detection of tech-
nical failures in industrial systems remained unresolved.
Existing approaches did not cover the full interaction cy-
cle between the digital model, sensor infrastructure, and
data processing tools, complicating practical use in com-
plex production environments. This highlighted the need
for research aimed at identifying technological prerequi-
sites and limitations for applying digital twins in cloud

environments to model and predict industrial failures. The
aim of this study was to comprehensively analyse digital twin
architectures in cloud environments, focusing on the distri-
bution of analytical functions across system levels and their
impact on the efficiency of predicting technical failures.

Materials and Methods

The methodological basis of the study was founded on a
critical analysis of interdisciplinary literature concerning
cloud implementation of digital twins in industry. The
research was theoretical in nature and aimed to create a
generalised conceptual framework by comparing techni-
cal approaches presented in current scientific and applied
analytics. Particular attention was paid to the interaction
of digital models with IoT infrastructure, data stream pro-
cessing, artificial intelligence (AI), as well as system adapt-
ability and scalability.

The source base included 44 documents: peer-reviewed
journal articles, review publications, industry reports from
leading technology companie such as Siemens (2023), offi-
cial documentation for industrial solutions including Az-
ure Digital Twins and AWS IoT Greengrass, and regulatory
documents such as ISO No. 23247-1 (2021), ISO No. 23247-
2 (2021), and IEC No. 62890:2020 (2020). Sources were se-
lected based on their relevance to cloud-based digital twins,
the presence of structured descriptions of architectures,
algorithms, or application scenarios, publication period
(2020-2025), and verified scientific or technical credibility.

The analysis was conducted in several stages. Initially,
texts were coded according to themes: architecture, algo-
rithms, industrial context, and implementation challeng-
es. In the second stage, thematic content analysis was ap-
plied, examining each document according to a three-level
structural grid: architectural level - structure of digital
twins, data processing methods, placement of computa-
tional nodes; algorithmic level — classification, forecasting,
anomaly detection methods, computational requirements,
and cloud infrastructure compatibility; organisational
level - scaling barriers, cybersecurity, managerial trust in
models, regulatory compliance. Analysis was performed
manually using Google Sheets and Miro for building com-
parison matrices. Each source element was tagged accord-
ing to: source type, technical focus, relevance to cloud
themes, and application sector. Structured data allowed
identification of recurring implementation patterns for
digital twins and clarified interconnections between archi-
tecture, algorithms, and application conditions.

Systematic comparison of sources using standardised
criteria and content coding enabled quantitative counting
of references to specific architectures, functional compo-
nents, and application sectors. Comparative evaluation of
architecture performance was based on aggregated data
regarding effectiveness in applied scenarios, consider-
ing cloud tool configurations, algorithm adaptability, and
industrial requirements. SWOT (Strengths, Weaknesses,
Opportunities, Threats) analysis of analytical algorithms
was built on identified technical characteristics and
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limitations, taking into account computational complexity,
interpretability, and resilience to data changes. To ensure
internal reliability, cross-validation was conducted: mod-
els mentioned in at least three independent sources were
marked as stable. Conflicting or rarely described solutions
were additionally checked for compliance in other docu-
ments or cross-industry analyses, preventing overestima-
tion of unique solutions with limited applicability.
Functional decomposition of digital twin architecture
served as a logic for classifying material. Sensor, logical, an-
alytical, and interface levels were studied separately, focus-
ing on their integration in cloud infrastructure. Dependen-
cies between task types (forecasting, classification,anomaly
detection) and resource requirements (latency, computa-
tional power, fault tolerance) were clarified in parallel. A
limitation of the study was the absence of empirical model
verification: all analytical conclusions were derived from
secondary sources. This imparts a conceptual nature to the
results, which require further validation in applied settings.

Results

Content analysis of architectural approaches to digital
twins. The deployment of digital twins in industrial sys-
tems using cloud technologies can follow various architec-
tural approaches, which influence the functionality, adapt-
ability, and scalability of the digital model (Siemens, 2023).
The choice between centralised, distributed, or hybrid

models depends on the nature of production processes, the
volume and frequency of data flow, and the requirements
for processing speed. In centralised architectures, which
traditionally rely on full data processing in the cloud, there
was a tendency for increased latency in information ex-
change between the physical object and its digital replica.
In such cases, modelling layers — from data collection to
analytics — were concentrated in remote infrastructure,
providing high computational power but placing additional
demands on network reliability (Rovere et al., 2022).

Hybrid models, combining edge, fog, and cloud func-
tionalities, proved to be more flexible and suitable for
adaptation in industrial environments. Critical signal
processing occurred at the edge, reducing latency, while
the cloud served as a platform for long-term storage and
analytics. This load distribution helped reduce traffic and
improve system fault tolerance. Some models also envis-
aged delegating part of the computations to local nodes,
with aggregated results subsequently transmitted to the
cloud (Borghesi et al., 2021). However, implementing such
architectures complicated synchronisation between layers,
updating digital replicas, and coordinating local and glob-
al forecasts, while also requiring consistency in visualised
data, which could hinder result interpretation. For a clearer
understanding of the functional characteristics of each ar-
chitecture, a comparative diagram of their main elements
is presented below (Fig. 1).
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Figure 1. Structural differences of three digital twin architectures in a cloud environment

Source: compiled by the author

The main distinction between approaches lies in the
degree of localisation of computational processes and
the speed of feedback, which directly affects the flexibili-
ty, processing latency, and fault tolerance of digital twins.
The multi-layered structure of industrial digital twin ar-
chitectures typically included sensory, logical, analytical,
and interface layers, each with a defined functional role
(Siemens, 2023). The sensory layer collected primary sig-
nals, the logical layer handled filtering and preliminary
processing, the analytical layer built simulation models

28

and assessed risks, and the interface layer provided out-
put and interaction with control systems. However, several
concepts showed ambiguity regarding the clear differentia-
tion of these layers, which manifested in varying interpre-
tations depending on the architectural configuration and
cloud model features (Onaji et al., 2022). This highlighted
the importance of ensuring coherence between function-
al modules of the digital twin, especially in the context of
scaling, synchronisation, and integration with the physi-
cal environment. Establishing robust interaction between
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layers remained a critical factor in overall system effective-
ness. Table 1 summarised the data obtained from literature

analysis regarding the structural and functional parame-
ters of digital twins implemented using cloud technologies.

Table 1. Quantitative distribution of key architectural decisions and functions of digital twins

Criterion Category Number of mentions

Hybrid 14

. Cloud-only 20
Architecture Edge-only 13
Fog/other 6

2-layer 3

System levels 3-layer

4-layer/multilayer 15

Real-time data 28

Functional components Ana?ytlcs (AI/ML) 55
Simulations 31
Model synchronisation 14

Note: ML — machine learning
Source: compiled by the author

Cloud-oriented architectures received the highest fre-
quency of mentions, which may indicate the historical domi-
nance of the centralised approach in the early stages of digital
twin deployment. This preference was likely due to the stabil-
ity, scalability, and relative ease of implementation of cloud
infrastructure compared to more complex hybrid or edge
solutions. At the same time, the relatively high frequency of
mentions of edge architectures, as well as the presence of fog
and hybrid approaches, points to the gradual evolution of ar-
chitectural strategies towards decentralisation and localised
computation. This evolution likely stems from the technolog-
ical need to minimise data processing latency and ensure rap-
id feedback, particularly in time-critical production scenarios.

Regarding system structure, the prevalence of multi-
layer architectures reflected the need for specialised distri-
bution of functions across sensory, logical, analytical, and
interface layers. Such organisation increased modularity
and flexibility but also created challenges related to data
integration and synchronisation between layers. The func-
tional distribution showed clear dominance of simulation
and analytical modules, confirming the orientation of dig-
ital twins towards modelling complex scenarios and failure
prediction. Meanwhile, less frequent mention of synchro-
nisation mechanisms between physical and digital objects
may indicate both the technical difficulty of implementing
this function and the theoretical underdevelopment of is-
sues related to real-time model consistency.

The reviewed approaches emphasised the importance
of aligning the update frequency of the digital replica with
the dynamics of the physical object. Considerable variability
was found in update rates, ranging from periodic data col-
lection to near real-time synchronisation. In practice, this
introduced risks of predictive errors, particularly when there
was a delay between the actual state of the object and its
digital counterpart (Jia et al., 2022). Implementing bidirec-
tional interaction, where analytical results affect the phys-
ical process, required high reliability, action logging, and
verification of permissible automated interventions. Some
conceptual models also considered behavioural scenarios of

changes in the production environment and the role of the
user in the interaction cycle with the digital twin (Kuo et
al., 2021). These approaches envisaged flexible interfaces,
communication layers, and adaptive logic, which, combined
with modularity principles, increased system scalability.
This is especially important for technical diagnostics and
real-time failure prediction in industrial environments.

Thus, architectural approaches to implementing digi-
tal twins in a cloud environment demonstrated significant
diversity at both structural and functional levels. Variabili-
ty in model selection and integration with physical objects
highlighted the need for adaptive solutions capable of ac-
counting for the contextual conditions of production. At
the same time, methodological uncertainty remained re-
garding standardisation of synchronisation principles, load
distribution, and consistency between layers.

Comparative effectiveness of digital twins in ap-
plied sectors. A review of publications on digital twins re-
vealed a concentration of research in six key sectors: urban
environments, manufacturing, engineering, automotive,
aerospace, and medicine. As shown in Figure 2, the larg-
est share of publications focused on urban scenarios (47%),
while other sectors showed lower activity: manufacturing —
17%, engineering — 12%, automotive — 8%, and aerospace
and medicine - 1% each.

14.00%

.‘ 17.00%
1.00% ‘

12.00%

= Manufacturing
Engineering
Automotive
Aerospace
Urban

= Reviews

8.00% = Medicine

47.00% 1.00%
Figure 2. Distribution of digital twin publications
by application sector as of 2024
Source: compiled by the author based on C. Dilmegani (2025)
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The greatest attention was on urban applications, en-
compassing smart city concepts, energy networks, trans-
port infrastructure, and digital modelling of complex so-
cio-technical systems. In this context, digital twins were
used to monitor critical objects (transformers, power units,
sewage systems, road interchanges) and manage their
operation in real time. Models were implemented for in-
frastructure degradation prediction, traffic simulation,
anomaly detection in loads, and emergency response sce-
nario modelling. In highly inertial urban systems, long-
term time series were predominantly used, requiring cloud
processing of large historical datasets (Yu et al., 2022).
Critical components, however, required partial offloading
of computations to the edge to minimise latency.

In the manufacturing sector, digital twins were primar-
ily used to optimise automated lines, control robotic units,
and improve process accuracy in high-precision engineer-
ing. Sensor monitoring included load, rotational speed, vi-
brations, and other mechanical activity indicators (Can &
Turkmen, 2023). The focus was on detecting deviations in
drive and actuator performance and generating forecasts
for preventive maintenance. Hybrid architectures, in which
preliminary analytics were performed locally and aggregat-
ed data sent to the cloud for long-term simulations, proved
effective. However, coordination issues between layers
sometimes reduced the stability of digital model updates.

In engineering, covering complex objects with long
lifecycles (e.g., bridges, dams, turbines), digital twins en-
abled analysis of structural loads, deformations, vibration
resonances, and other physical characteristics. Research
primarily focused on static and semi-dynamic scenarios,
allowing identification of wear processes. Accurate simu-
lations facilitated predictions of residual object life and

reconstruction feasibility. Cloud services were mainly
used for data accumulation and scenario modelling, while
real-time processing was not critical. The automotive
sector used digital twins to monitor vehicle components,
including engines, braking systems, batteries, and naviga-
tion systems. This domain combined real-time process-
ing with high-frequency data updates, complicating the
balance between local computations and cloud analytics.
Early failure detection algorithms and assessments of op-
erating conditions’ impact on vehicle health were widely
applied. Network limitations and issues with standardis-
ing data formats across digital twin components compli-
cated practical deployment.

Although the aerospace industry accounted for a
small share of mentions, it demonstrated high technical
complexity in digital models. Research showed the use of
high-precision simulation models synchronised with flight
parameters, navigation, and structural loads. Due to strict
reliability and accuracy requirements, specialised cloud
environments were used for deep data processing and
post-mission analysis (Moenck et al., 2024). However, the
complexity of synchronisation and high implementation
costs limited large-scale real-time deployment.

Medicine accounted for the smallest share among ap-
plied sectors. Digital twins were used for virtual modelling
of physiological processes, simulating treatment responses,
and analysing biomechanical structures. Due to high data
individualisation and confidentiality requirements, most
computations occurred in secure environments with lim-
ited cloud access. This complicated scalability but ensured
patient-level accuracy. Architectural solutions, typical data
sources, and key performance indicators were analysed for
each sector, with summary results presented in Table 2.

Table 2. Features of digital twin applications in different sectors

Sector Typical architecture Data sources Performance indicators
Transport flows, 10-15% reduction in energy use, 25% improvement in load
Urban Cloud + Fog energy consumption forecasting, 15-18% increase in urban service efficiency.
. . . . 25-30% reduction in downtime, 20-25% increase in overall
Manufacturing Edge + Cloud Vibration, load, noise productivity, 10-12% energy savings.
Computer-aided Lo . .
. . . 35% reduction in design errors, 15-20% shorter development time,
Engineering Cloud diigﬁlﬁ?ggs’ 18-20% improved parameter estimation accuracy.
. Vibration, 20% improvement in technical diagnostics, 18% maintenance cost
Automotive Edge + Cloud temperature, load reduction, 10-15% extended service intervals.
Aerospace Cloud Flight sensors, 30-40% improved predictive accuracy, 20-25% reduction in failure
P acoustic analysis risk, 15-20% faster processing of critical signals.
Medicine Cloud Imaging, patient 15% increased diagnostic accuracy, 10-12% shorter preparation
biosignals time for interventions, 8-10% reduced procedural complication risk.

Source: compiled by the author based on W. Yu et al. (2022), O. Can & A. Turkmen (2023), R.D. D’Amico et al. (2023), K. Moenck et

al. (2024)

Comparative analysis showed that digital twin per-
formance largely depended on the production environ-
ment, types of signals processed, and time-criticality of
responses. These systems were most effective where data
was structured, communication channels were stable, and
operations were highly repetitive. Cloud technologies en-
sured scalability and historical data storage but required

architectural adaptation to sector-specific conditions: edge
solutions prevailed in highly dynamic environments such
as aviation and automotive industries, while a centralised
cloud approach was appropriate for urban systems and
medicine. Therefore, digital twin deployment strategies
needed to account for both technical and organisational
parameters of each sector.
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SWOT analysis of digital twins in cloud infrastruc-
ture. In deploying digital twins in cloud environments, an-
alytical algorithms played a key role in providing functional
system value. They enabled automated anomaly detection,
technical failure forecasting, and data-driven decision
support from industrial objects. A SWOT analysis of these
algorithms was conducted to outline development oppor-
tunities and potential threats in cloud deployment (Fig. 3).

Strengths Weaknesses

Dependence on network
connection stability.

Flexible scalability of
cloud infrastructure.

Possibility of integration

with AI/ML for High cybersecurlty
f . requirements.
orecasting. )
Centralised access to Methodolpglcal
uncertainty

simulations and analytics.

in model verification.

Opportunities

Threats
Automation i
of maintenance and Instability of the regulatory
. framework.
repairs. o o )
Development Limited compatibility with

of edge/fog components to SxctinalR R S

reduce latency. High competition

Integration with digital among solution providers.

data exchange platforms.

Figure 3. SWOT analysis
of cloud-based digital twin technology in industry
Source: compiled by the author

Among strengths, algorithms’ ability to process large
volumes of multi-sensor data in the cloud was highlighted.
This capability combined high-performance modern com-
puting architectures with parallel processing of information
streams from heterogeneous sources. Methods such as Ran-
dom Forest, Support Vector Machines, or Long Short-Term
Memory (LSTM) provided sufficient accuracy and scalabil-
ity for specific tasks, such as fault classification, technical
degradation forecasting, or anomaly detection in streaming
signals. Random Forest was effective with large feature sets
and complex non-linear relationships, while LSTM models
facilitated time-series prediction accounting for long-term
dependencies between object states (Gao et al., 2023).

A particular advantage was the ability to integrate with
IoT infrastructure, allowing data processing in a near re-
al-time mode without the need for intermediate storage on
central servers. This enhanced the adaptability of systems
to rapid changes in the technical state of assets, which is
critically important in high-dynamic industrial environ-
ments (Hu et al., 2021; Liu et al., 2025). Additionally, algo-
rithmic solutions employed by digital twins reduced reli-
ance on traditional maintenance methods, shifting towards
models based on the actual condition of equipment. An-
other efficiency factor was the availability of cloud-based
model lifecycle management tools, such as Azure Machine

Learning or Amazon SageMaker, which automated process-
es for training, validation, versioning, and deployment of
analytical models. In combination with cloud infrastruc-
ture, these tools enabled centralised monitoring of model
performance and continuous analytics improvement via
AutoML mechanisms. Such platforms also facilitated the
implementation of continuous integration/continuous de-
ployment practices in industrial data processing, increas-
ing the stability and reliability of digital twin systems in
operational environments.

At the same time, several weaknesses were identified.
A primary issue remained the dependence of model per-
formance on the type of data and the specific task. Deci-
sion tree models, particularly Random Forest, exhibited
decreased accuracy when faced with strong class imbal-
ance, a common feature of real-world technical processes
where failures occur far less frequently than normal opera-
tion (Liang et al., 2022). Under such conditions, algorithms
tended to focus on the dominant class, ignoring atypical
or critical scenarios. Techniques such as synthetic minority
oversampling or adaptive reweighting partially mitigated
this issue but simultaneously increased model complexi-
ty and processing time. LSTM models, used for time series
analysis, were resource-intensive. Their effective training
required large volumes of historical data, powerful com-
putational infrastructure, and long convergence times.
In cloud environments, these requirements could lead to
higher processing costs, increased prediction latency, or
even the need to simplify model architecture at the ex-
pense of accuracy. Real-time LSTM applications often re-
quired data aggregation or down-sampling, limiting their
suitability for highly dynamic assets.

Data drift — gradual changes in feature distribu-
tions or dependencies in sensor streams due to equip-
ment wear, environmental changes, or system upgrades —
posed a further threat. Model performance could degrade
even if the formal structure of input data remained un-
changed (Cai et al., 2022). This necessitated mechanisms
for continuous performance monitoring, periodic retrain-
ing, or dynamic parameter adaptation. However, such prac-
tices complicated the analytical component’s operation,
increased technical support requirements, and demanded
clearly regulated quality-check procedures post-update.
Analysis revealed opportunities to enhance algorithm effi-
ciency, particularly in adaptability, scalability, and complex
data stream processing. One promising approach was the
use of ensemble systems that combined multiple model
types to improve resilience to noisy or heterogeneous data.
This method compensated for the limitations of individual
algorithms through collective interaction, reducing over-
fitting risks and improving result accuracy.

Another promising direction was the implementa-
tion of stream analytics via specialised platforms such
as Apache Flink, Apache Kafka Streams, or Azure Stream
Analytics. These platforms enabled real-time sensor data
processing without prior storage, improving system re-
sponsiveness to critical deviations. Extending these
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systems’ functionality through integration with ML librar-
ies allowed not only basic filtering and aggregation but also
complex classification, clustering, and anomaly detection
within the data stream. Additional opportunities included
self-learning or adaptive models capable of automatically
adjusting to changing operating conditions without man-
ual retraining. Such models, based on online learning or
evolutionary algorithms, could modify their structure or
weights in response to data drift, operational mode chang-
es, or new signal types (Lugaresi et al., 2023). This pre-
served analytical relevance in dynamic environments and
reduced the technical staff’s workload. Adaptive strategies
also increased model resilience to sudden changes, such as
equipment upgrades or the introduction of new elements
into the production process.

Nonetheless, threats affecting system stability, re-
liability, and security remained. Cybersecurity was a key
concern: the openness of cloud interfaces, complex access
structures, and multi-stage data processing created con-
ditions for potential attacks (de Azambuja et al., 2024).
Threats included both unauthorised access to models and
tampering with input or output data, both of which distort-
ed analytics results. Particularly dangerous were data poi-
soning and model inversion attacks, where models trained
on corrupted datasets could reveal confidential informa-
tion. Inadequate environment segmentation or absence of
multi-level authentication increased risks of compromis-
ing the entire digital twin system.

Challenges also arose in validating and verifying mod-
els operating on multi-source data streams. In cloud en-
vironments, sensor sources could differ in format, update
frequency, latency, and accuracy, complicating consistency
between input data and the digital representation of phys-
ical processes. Determining acceptable error margins was
particularly difficult in critical sectors, where even minor
deviations could lead to incorrect decisions (Plageras &
Psannis, 2022). The opacity of complex models, especially
neural networks, further complicated monitoring and en-
sured alignment with real-world asset states.

Thus, the effectiveness of cloud-deployed digital twin
analytics depended on their ability to adapt to specific in-
dustrial requirements, maintain a balance between accu-
racy, interpretability, and computational complexity, and
integrate with cloud-based model lifecycle management
tools. Assessment showed that no single existing technolo-
gy offered a universal solution, yet their combination — guid-
ed by modularity, adaptability, and automation - opened
new prospects for industrial digital twin development.

Discussion

The study systematised architectural, sectoral, and algo-
rithmic features of digital twin implementation in cloud
environments for predicting technical failures. Patterns
observed confirmed the absence of a universal deployment
model; architecture, analytical methods, and integration
tools depended heavily on the industrial context. Inter-
action between IoT, cloud computing, and Al models was

particularly relevant, forming the backbone of next-genera-
tion intelligent analytics systems. This aligns with R.S. Ken-
ett & J. Bortman (2022), who viewed digital twins not as iso-
lated components but as part of an integrated quality and
reliability management ecosystem, focused on context-de-
pendent analytics. The effectiveness of digital twins depends
not only on model accuracy but also on their integration with
production logic, representation of current asset states, and
dynamic response to internal and external disturbances.
Industry scenario analysis corroborated R. Gonza
lez-Herbén et al. (2024), emphasising that digital twin
structures must adapt to the physical object type, sensor
load, and decision-making cycles. In highly automated
sectors, digital twins must cover both monitoring and ac-
tive process management. Three primary architectural ap-
proaches were identified, each relevant predominantly to
a specific task type, highlighting that no architecture can
claim universality without losing adaptability or efficiency.
Among analytical methods, those balancing prediction ac-
curacy, response time, and computational cost were most
effective. This aligns with S. Attaran et al. (2024), who em-
phasised that intelligent flexibility and cloud scalability
determine digital twin performance in Industry 4.0. The
ability to scale, adapt to rapidly growing data streams, and
leverage Al components was key to successful digital enter-
prise implementation. Systems using stream processing of
IoT data responded best to failures and anomalies.
Detailed analysis of digital twin architectures con-
firmed findings by C. Stergiou & K. Psannis (2022) on the
critical role of cloud environments in managing large data
volumes. Their three-tier model was considered optimal for
heterogeneous data streams in distributed systems. Results
showed practical efficiency: the edge tier allowed rapid sig-
nal filtering and preprocessing, while the cloud aggregat-
ed, stored, and analysed data. This reduced communication
load and improved resilience to latency and data loss. Co-
ordination complexity and the need for model standardisa-
tion aligned with the authors’ discussion of configuration
management challenges in heterogeneous environments.
Trust in digital twin analytics remained a critical factor
(Kamble et al., 2022). Lack of transparent validation, audit
complexity, and opacity of deep models, including LSTMs
or autoencoders, constrained their adoption in critical in-
dustrial contexts. When models required not only accurate
predictions but also explainable decisions, Al opacity was a
barrier. Data drift requiring frequent retraining posed addi-
tional challenges, often infeasible in real time without halt-
ing critical functions, reducing operator trust and adaptive
management applicability. Integration of deep learning
improved recognition of complex patterns and degradation
forecasting (Lee et al., 2020), but required careful control
of infrastructure. This study confirmed that LSTM-based
architectures’ performance depended on stable access
to cloud resources capable of scalable training. Network
bandwidth fluctuations or absence of adaptive scaling led
to decreased efficiency or delayed responses, negating high
accuracy advantages. Similar conclusions were reached by
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T. Savchuk & A. Kozachuk (2015), who proposed an auto-
mated decision-making algorithm for cloud application
scaling based on reactive rules and an efficiency evaluation
function. Their approach emphasised the need to balance
infrastructure cost and user retention under variable loads,
which directly supports the premise that adaptive scaling
mechanisms are essential for maintaining digital twin re-
sponsiveness in dynamic industrial environments.

Analytical methods for unsupervised anomaly detec-
tion were significant, as noted by A. Ucar et al. (2024), who
highlighted autoencoders’ potential in predictive mainte-
nance. This study confirmed their effectiveness in distrib-
uted IoT systems with limited labelled data, though their
sensitivity to operational variability and input changes
posed challenges for long-term cloud-based performance.
Comparing architectures with predictive efficiency allowed
analytical generalisations regarding digital twin suitability
in various industries. D. Zhong et al. (2023) found digital
twins most effective in predictable or repetitive scenarios,
allowing standardisation of behaviour and creation of nor-
mal operation templates. This aligns with findings in ener-
gy and mechanical engineering sectors, where digital mod-
els were more stable and less sensitive to update frequency.
Dynamic environments required complex simulations and
high update rates (Alshathri et al., 2023).

Stream analytics approaches in this study align with
Y. You et al. (2022), emphasising continuous sensor signal
processing for timely anomaly detection. In short-lived or
unexpected disturbances, periodic data collection may be
insufficient. Integrating real-time stream analytics is cru-
cial for effective digital twin response to technical state
changes. Dynamic balancing between edge, fog, and cloud
tiers was observed, consistent with Y. Wang et al. (2023)
cooperative computing model, automating resource coor-
dination based on network status, system load, and signal
priority. This is suitable for complex industrial scenarios
with uneven loads and unpredictable disturbances.

Overall, results align with contemporary scientif-
ic trends in digital twins and clarify important aspects of
cloud implementation. Combining IoT sensors, stream
analytics, flexible AI algorithms, and adaptive architec-

Conclusions

The study systematised key architectural approaches for
cloud-based digital twins and generalised their structure
through a four-tier model. In most technical scenarios, sys-
tem effectiveness depended on the analytical tier’s ability
to interact with real-time data, maintain low processing
latency, and adapt simulation parameters to dynamic op-
erating conditions. Literature analysis showed that inter-
action between edge and cloud components is critical for
both responsiveness and long-term predictive capability.
Functional decomposition into sensor, logical, analytical,
and interface tiers is a universal framework applied across
industries. Comparative analysis indicated that distributed
analytics, with part of data processing at the edge, provided
greater resilience to network failures and reduced cloud in-
frastructure load. Centralised components remained neces-
sary for adaptive long-term forecasting based on historical
data.Cloudinteractionfailures createdrisks of critical laten-
cy, particularly with high-frequency data updates, limiting
real-time digital twin applicability without local buffering.

Current approaches showed ambiguity in function al-
location across architectural tiers. Analytical tasks were
sometimes offloaded to the logical tier or duplicated at edge
and cloud levels, indicating a lack of unified functional de-
composition principles. In-depth analysis of the analytical
component clarified technical and methodological features
of commonly used algorithms, considering advantages and
limitations in cloud environments. Algorithm effectiveness
depended on input data type, IoT infrastructure configura-
tion, and resource constraints. Low model interpretability,
high computational costs, and sensitivity to data drift re-
mained barriers to large-scale deployment. However, identi-
fied opportunities offered paths to improve digital twin reli-
ability, scalability, and flexibility in industrial environments.
Future research should leverage empirical data to verify
identified digital twin architectures in real industrial set-
tings. Particular attention is required for testing cloud syn-
chronisation mechanisms and scalability of analytical mod-
ules under dynamic changes in asset technical conditions.
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AHOTOALA. AKTYyaJIbHICTh HOCTIIKeHHSI 3yMOBJIEHa 3POCTaHHSIM CKJIAJHOCTI MIPOMMUCIOBUX CUCTEM i HEOBXiIHICTIO
00pO6KM BeNMKUX IMMOTOKIB JAHMX y peaJbHOMY uaci 1Jis1 3abe3reveHHs] HaJilfHOTO MOHITOPMHIY, IIPOTHO3YBAaHHS
TeXHIUHUX 360iB i MiATPUMKM NPUIHSITTS pilieHb. MeTow po6oTM Oyno imeHTUdIKyBaTM TUIIOBI apXiTeKTypHi
KoHOirypanii uudpoBux ABIHMUKIB Y XMapHOMY CepeloOBMIIi Ta BU3HAUUTH, SIK PO3MOMLIT aHATITUUHMX (QYHKILii
MDK apxiTeKTypHMMM DPiBHSIMM BIUIMBA€ Ha e(dEeKTUBHICTh TakKuMX CUCTEM Y BUPOOHMUYMX yMOBax. MeTOmOOorist
JNOCITiIKeHHS IPYHTYyBanacsl Ha KpUTUYHOMY aHali3i MDKIMCIUILIIHADHUX JpyKepeJl i3 3aCTOCYBaHHSIM KOHTEeHT-aHali3y,
MOpiBHSIIbHOTO aHasizy Ta SWOT-aHasisy, 1m0 A03BOAMIO 3AIMCHUTUM TeMaTMuHe CTPYKTypyBaHHSI MaTepiaay 3a
apXiTeKTyPHMUMMU, aITOPUTMIYHMMU Ta OpraHizaliiiHoO-HOPMaTMBHMUMU NapaMeTpaMy. Y pes3ysbTaTi BCTAHOBJIEHO, L0
6araTopiBHeBa Mozesb M(PPOBOro ABifiHNKA € YHiBepCAJbHOI0 OCHOBOIO JJIs1 OMIMCY apXiTeKTyp y MallMHOOyoyBaHHi,
eHepreTulli i aBTOMaTM30BaHOMY BUPOOHUITBI. [i6puAHi pilleHHSI 3 TIepeHeceHHsSIM YacTMHM aHAIITUKM Ha edge-
piBeHb 3abe3mevyBany MiABUINEHY CTilKiCTh OO MepeskeBMX 300iB i Kpally ajanTaiiilo 40 3MiH TeXHiUHOTO CTaHy
06’ekTiB. BusiB/ieHO, 10 ePeKTUBHICTh CUCTEM 3ajexkasia He JiMIlIe Bif Torosnorii oGumMcaoBasbHMX 3amad, a i Bifg
3IATHOCTI aHAMITUYHUX MoOJeneil o6pobasSITH MOTOKOBI JaHi, 36epiraTu TOUHICTb Mpu Apeiidi HaHUX i 3aMUIIATHACS
iHTeprpeTOBAaHMMM B YMOBAx KPUTMUYHUX pilleHb. Iloka3aHo, 10 KIIOYOBMMM OGap’epamu peamisaiii 3amuimanmcs
(bparmeHTapHicTh MiAXOMiB A0 (QYHKIIOHAJIBHOI JEKOMMO3UIii, BiCYTHICTh €AMHMX CTAHAAPTIB Ta YYyTIMUBICTH HO
HecTabiMbHOI B3aeMopii Mixk kKomrioHeHTaMu. Ha 0CHOBI Mixkramy3eBoro 3ictaByieHHs chOpPMOBAHO TUIIOJIOTII0 apXiTeKTyp
undpoBMX OBIMHMKIB, [0 BPaXOBYE XapaKTep pO3IOAiy aHaJiTUKM Ta ii iHTerpalii 3 XMapHOIO iHPPaCTPyKTypOIO.
OTpuMaHi pe3yJibTaTy CTaHOBJISITh KOHLIENITya/IbHY OCHOBY /151 HIOJA/bLINX eMIIipUUHMX JOCTiIKEHD, CIIPIMOBAHMUX Ha
MpakTUYHY Bepudikaiiio cTabiibHOCTI, afanTUBHOCTI /1 MacuITaboBaHOCTI MPPOBUX ABITHUKIB y BUPOOHUUMX YMOBAX

KnouoBi cnoBaA: norokoBa 06po6Ka JaHUX; CUMY/ISIiiHe IPOrHO3yBaHHs; BUpoOoHMUYi loT-cucTemin; MporLo3Ha
aHaiTUKa; ribpuaHa indpacTpykrypa
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