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Abstract. The relevance of the research lay in the need to improve the performance of WebVR applications in browser
environments with limited network bandwidth, which is important for users with slow or unstable Internet connections. The
aim of the work was to develop and evaluate effective methods that reduce scene loading times, optimise the amount of data
transferred, and maintain a stable frame rate without compromising the quality of interaction. The study used experimental
modelling of a virtual reality environment with limited network parameters. The work used open libraries for three-dimensional
graphics with the ability to progressively load 3D resources. Several optimisation methods were implemented and compared,
including multi-level model detailing, deferred loading, server-side geometry simplification, data compression, and texture
decompression. The effectiveness was evaluated based on loading time, traffic volume, smoothness of playback, and system
response. The results of the study showed that combining multi-level detailing with texture compression can reduce the
amount of data transferred by up to 70% without noticeable loss of image quality. It was found that the use of progressive
loading significantly reduces the initial scene rendering time, while client-side caching reduces repeat traffic by 90%. The
most effective strategy was found to be the initial loading of simplified models with the subsequent asynchronous addition of
detailed objects, which supports stable operation even at low Internet speeds. The practical value lies in the application of the
developed methods in the creation of WebVR applications for education, medicine, commerce, and entertainment, especially
in conditions of limited internet connection. This contributes to expanding the audience and reducing infrastructure costs
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Introduction

Modern virtual reality (VR) technologies are increasingly
being integrated into the web environment thanks to the
development of application programming interfaces (APIs)
such as WebVR (Web Virtual Reality) and WebXR (Web Ex-
tended Reality). However, the performance of such solutions
depends on the quality of the internet, which complicates ac-
cess in regions with slow or unstable connections. Tradition-
al VR applications that require the transfer of large amounts
of 3D data are ineffective in such conditions. This necessi-
tates the optimisation of VR content to take into account
network limitations. The main task is to maintain a balance

between visualisation quality and the amount of data trans-
ferred. Deterioration in quality reduces the user experience,
while maintaining full detail complicates scene loading.
This requires a comprehensive approach to optimisation,
including the use of level-of-detail (LOD) models, resource
compression, progressive loading, and efficient caching.

Globally, the current state of VR content optimisation
for low-bandwidth web environments has been character-
ised by the active development of adaptive algorithms that
take into account network fluctuations and limited resourc-
es. In particular, research focused on integrating WebXR
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with networks to reduce latency and optimise traffic. For
example, H. Lee & Y. Hwang (2022) evaluated the use of VR
technologies in web environments for educational purpos-
es, emphasising the importance of an adaptive approach to
resources and optimising interaction in conditions of lim-
ited bandwidth. F. Maura et al. (2024) worked on algorithms
that automatically adjust the quality of VR video depend-
ing on network speed using Wi-Fi. Their research showed
that such algorithms reduce video “freezing” by 20%, which
is useful for creating smooth VR applications in browsers.

The research focused on streaming VR content in a web
environment focused on user experience quality, where
adaptive encoding, progressive loading, and caching meth-
ods were key. B. Fanini & G. Gosti (2024) developed a pipe-
line for immersive analytics based on WebXR, addressing
network bottlenecks and performance issues in collabora-
tive 3D environments, reducing data volume and latency
in low-bandwidth conditions. J. Woo et al. (2024) proposed
a method that predicts internet speed using artificial in-
telligence (Gated Recurrent Unit models) and adjusts video
quality, reducing latency by 11% in mobile networks. This
approach can be useful for adapting WebXR applications to
low-speed conditions. B. Fanini et al. (2021) presented the
ATON framework for creating immersive Web3D/WebXR
applications, which adapts interfaces and rendering to de-
vices, including resource optimisation for low-speed net-
works through compression and progressive loading.

B. Sobota et al. (2023) investigated the use of web-
based 3D environments in primary and secondary educa-
tion for children with multiple disabilities, demonstrating
the practical applicability of such environments in con-
ditions of limited technical resources and confirming the
possibility of adapting content for poor network conditions.
L. Franke & D. Haehn (2020) in their review of modern web
visualisations emphasised the role of WebXR alongside the
Web Graphics Library in optimising performance, allow-
ing the creation of high-quality 3D experiences with less
network load through efficient compression and caching.
K.A. Mills et al. (2024) developed an approach to using VR
games and multimodal 3D environments in education,
which contributes to the effective optimisation of web VR
content and improves the quality of interaction in educa-
tional systems. Overall, these works pointed to a trend to-
wards using frameworks such as A-Frame and Three.js, ma-
chine learning, and edge computing to adapt VR content,
but not enough attention has been paid to comprehensive
optimisation for low-bandwidth browsers, especially in
combination with LOD, progressive loading, and caching.
For example, A.-M. Boutsi et al. (2023) emphasised the role
of multi-resolution rendering schemes using the Three.js
library and glTF formats with Draco compression to reduce
the loading time of 3D models in networks with limited

bandwidth. Similarly, a study by S.-M. Wang et al. (2022) de-
scribed support for progressive asset loading and adaptive
resource optimisation, which allows web VR applications
to reduce the first render time on low-speed networks.

Scientific research in the field of WebVR is actively
developing, but much of it is focused on high-speed con-
nections or native VR environments. Insufficient attention
is paid to the specifics of how VR applications function in
browsers under unstable network conditions. The aim of
the study was to develop effective optimisation strategies
that minimise loading delays, reduce the amount of data
transferred, and ensure a stable frame rate, while main-
taining the quality of user interaction with the system even
under conditions of limited computing resources.

Materials and Methods

The study focused on optimising WebVR applications for
browsers under low network bandwidth conditions (less
than 2 Mbit/s). The methodology was developed to ensure a
stable frame rate of 60 frames per second (FPS), reduce load-
ing delays, and maintain the quality of the user experience.
The study used data from S. Pacheco-Gutierrez et al. (2021),
Three.js (n.d.), and A-Frame Documentation (n.d.). A Web-
VR/WebXR test scene was created using the Three.js and
A-Frame libraries. The scene contained 3D models (up to
120,000 polygons), physically correct textures, dynamic
lighting, and animation that simulated typical VR applica-
tions. Testingwas conducted at a network speed of 1-2 Mbit/s,
reflecting real conditions in regions with slow internet.

Three methods were tested: dynamic level-of-detail
(LOD) replacement, texture compression in .basis format,
and progressive loading with caching via Service Workers.
The experiments were conducted on laptops (Intel UHD
Graphics) and smartphones (Android/iOS) in Chrome,
Firefox, and Edge browsers with WebXR support. The gITF
models had simplified (3-5 thousand polygons) and de-
tailed (up to 100 thousand) versions. .basis textures were
selected based on network speed via navigator.connec-
tion.downlink. The scene was created with LOD, textures
were compressed with the Basis Universal tool, and Service
Workers cached the data. Performance was evaluated based
on loading time (performance.now()), FPS, data volume,
and graphics processing unit (GPU) load, measured using
Chrome DevTools. The sample included several scenar-
ios, each with 5-15 objects, to evaluate the methods un-
der different conditions. Table 1 summarises the data for
each scenario. The methodology allowed to test the effec-
tiveness of the combination of LOD, texture compression,
progressive loading, and caching under low bandwidth
conditions. The choice of methods was justified by their
proven effectiveness in other studies (Pacheco-Gutierrez et
al., 2021; Zadnik et al., 2022; Liu et al., 2023).

Table 1. Description of test scenarios

Scenario Number of objects Content type Main parameters
Scenario 1 5 Static objects Simplified models, 512x 512 textures
Scenario 2 8 Mixed Detailed models, 1024 x 1024 textures
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Table 1. Continued

Scenario Number of objects Content type Main parameters
Scenario 3 12 Dynamic objects Animation, 2048 x 2048 textures
Scenario 4 15 Complex scene LOD, .basis compression, delta updates

Source: developed by the authors based on experimental data

These approaches were implemented in detail to assess
their effectiveness in practical conditions. In particular, dy-
namic LOD replacement involved loading two versions of
models — simplified (3-5 thousand polygons) and detailed
(up to 100 thousand polygons). Simplified models were
loaded first, and detailed models were loaded asynchro-
nously after scene initialisation. Formally, this approach is
described as two-phase scene initialisation:

Tiotal = Tilr?i‘{v + T;éff;;) ey
where T/\°% — initialisation time for simplified models,
and, T(];;%:r— asynchronous loading of detailed models.

Additionally, a method of adaptive texture replace-
ment using the .basis format has been implemented. Sever-
al texture options (512x512, 1024 x 1024, 2048 x 2048) have
been prepared for each object. The principle was calculated
using the formula:

- @)

where S - size of transmitted data, B — network bandwidth.

For example, for S=3 MB and B =1 Mbit/s, T was 24
seconds. When using Basis Universal, the size was reduced
to 0.6 MB, which corresponded to only 4.8 seconds. To
reduce the load on the GPU, simplified 256 x 256 normal
maps were used to simulate a complex surface (accord-
ing to Chrome DevTools). Shaders (graphics processing

[

programs) were also optimised: instead of complex math-
ematical effects, simple textures were used, the number
of light sources was limited to two, and materials were
changed to less resource-intensive ones (MeshStandard-
Material instead of MeshPhysicalMaterial). The optimised
loading code is shown in Figure 1.

const modelLow = await loadGLTF('models/scene_low.glb')

scene.add(modellow)

initScene().then(() => {
loadGLTFAsync( ‘models/scene_high.glb").then(modelHigh => {
scene.remove (modellLow)
scene.add(modelHigh)
b
b))

Figure 1. Optimised loading code
Source: developed by the authors based on data from
Three.js (n.d.), A-Frame Documentation (n.d.)

The “delta change transmission” method was considered
separately — instead of a complete scene update, only chang-
es in the positions, rotations and states of objects are trans-
mitted. For example, instead of JavaScript Object Notation
(JSON) with a full description of 1,000 objects (~2 MB), only
ID arrays and change vectors were transmitted, which re-
duced the average payload size to 40-60 KB per frame (Fig. 2).

{"id": "chair_2", "position": [1.2, 0, 3.3], "rotation": [0, 90, 0]},

{"id": "door_1", "open": true}

Figure 2. Structure of the delta package for updating scene objects in JSON format
Source: developed by the authors based on materials from S. Pacheco-Gutierrez et al. (2021)

Thus, the developed methodology provided a compre-
hensive verification of the impact of key WebVR applica-
tion optimisation techniques in low-bandwidth browsers.
It combined LOD levels, adaptive texture compression, and
caching mechanisms, allowing to evaluate not only individ-
ual performance parameters but also system stability during
dynamic scene updates. The methodology was reproducible
because it uses open-source tools Three.js and A-Frame.

Results and Discussion

Initial tests showed that loading full-size models and tex-
tures with a resolution of 2048x2048 at a speed of 1 Mbit/s
resulted in a first render time of 12.4 seconds and a frame
rate of no more than 24 FPS. Testing was conducted across

four scenarios covering static, mixed, dynamic, and com-
plex scenes. A comparison of methods showed that LOD
with deferred loading of detailed models provided the fast-
est initial rendering. Texture compression provided the
greatest reduction in latency, although low-quality tex-
tures slightly reduced visual quality. Delta updates were
most effective for dynamic scenes, transmitting only 2-3%
of the data from the full scene state with an update time of
less than 100 ms. The combination of all methods allowed
to achieve a stable 60 FPS on devices with a weak graphics
core (Intel UHD) at speeds of less than 1 Mbit/s (scenar-
io 4). Key metrics: reduction in GPU frame time from 48 ms
to 15 ms, first render time from 9.6 s to 2.8 s, data volume
from 24 MB to 3.1 MB (Table 2).
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Table 2. Comparison of optimisation method performance

Method First render time (s) FPS Data volume (MB) GPU frame time (ms)
Without optimisation 12.4%0.5 24.0+1.0 48+2
LOD 4.2%0.2 57-60 6.5%£0.3 20%1
Compression .basis 5.1%£0.3 55-60 3.1%£0.2 18+1
Delta updates 6.8£0.4 58-60 4.0£0.2 171
Combination of methods 2.8+0.2 3.1+0.2 15+1

Source: developed by the authors based on experimental data

The results showed that each optimisation method has
its advantages depending on the type of content. In par-
ticular, the use of LOD proved to be most effective for static
scenes with a large amount of geometry (scenario 1), as it
allows simplified models to be displayed quickly and de-
tailed ones to be loaded gradually. LOD reduced the time to
first render to 4.2+0.2 seconds, providing a stable 57-60 FPS
even on devices with basic graphics. Texture compression in
.basis format is best suited for projects with a large amount
of graphic material (scenario 2), providing a significant re-
duction in loading time without noticeable loss of quality.
The amount of data transferred was reduced to 3.1+0.2 MB,
which gave the best results on slow networks. Delta updates
showed the best results for dynamic scenes with a large
number of moving objects (scenario 3), as they only trans-
mit changes in states, reducing traffic several times over.
Delta updates minimised scene update latency, delivering
a stable 58-60 FPS even in dynamic scenarios. The com-
bined use of all methods ensures versatility and stable per-
formance regardless of scene complexity or network speed.

A detailed review of the results showed that the LOD
method was most beneficial in cases where fast first ren-
dering was key. Scene appearance time was reduced by
more than three times compared to the baseline, and the
reduction in GPU load allowed for consistently high FPS
even on devices with limited resources. This was particu-
larly noticeable on laptops with Intel UHD, where perfor-
mance improved the most. The only exception was Firefox,
where short drops sometimes occurred during the gradual
loading of details, but they did not have a critical impact on
the user experience. The results for compressing textures
in .basis format were different. Its main advantage was the
maximum reduction in the amount of data transferred,
which resulted in a significant gain in bandwidth. This ef-
fect is especially important in slow networks, where .basis
made it possible to avoid long delays and maintain smooth
scene rendering. At the same time, performance varied
slightly depending on the platform: on iOS, hardware sup-
port accelerated decompression, while on Android, with
less powerful hardware, additional delays were observed.
This indicated that the effectiveness of the method is high-
ly dependent on the specific execution environment.

Delta updates had the greatest impact on reducing net-
work traffic. The amount of data transferred was reduced
tenfold, which had a positive effect on the interactivity of
dynamic scenes. As a result, the system’s response time ap-
proached real time, and the frame rate remained virtual-
ly unchanged. On mobile devices, the mechanism worked

flawlessly in Chrome and Edge, while in Firefox there were
cases of request accumulation, which caused short pauses
in the update. Despite this, the average performance re-
mained within a comfortable range of 58-60 FPS. Compar-
ing the methods according to key metrics (Table 2) reveals
a clear distribution of strengths: LOD provided the best op-
timisation of start-up time, .basis offers the most effective
reduction in network traffic, and delta updates reduce GPU
load while ensuring high system responsiveness. The com-
bined use of these techniques allowed to combine their ad-
vantages: rendering started in less than three seconds, data
volumes were reduced by almost eight times, and the load
on the GPU fell threefold compared to the initial conditions.

Analysis of results on different devices confirmed the
versatility of the combined approach. On laptops with inte-
grated graphics, performance reached a stable 60 FPS even
at network speeds below 1 Mbps. Android smartphones
showed slightly higher latency due to slower decompres-
sion, but the average frame rate did not drop below 55 FPS.
iOS devices proved to be the most stable thanks to hard-
ware optimisation, making them the most convenient plat-
form for applying such techniques. Thus, all three methods
have different effects on key metrics, but their combina-
tion provides the most balanced result for different types
of scenes and different technical conditions. This ensures
an acceptable quality of experience even on low-bandwidth
networks and devices with weak graphics cores.

A comparison with other studies revealed similarities
in approaches, but also revealed important differences. For
example, A.-M. Boutsi et al. (2023) achieved a 46% reduction
in render time using multi-resolution 3D rendering, which is
similar to the author’s LOD, but their methodology was not
focused on low-bandwidth scenarios (tests were conducted
mainly at speeds >5 Mbit/s). In contrast, the approach in this
article showed stable 57-60 FPS even at <2 Mbit/s, making it
suitable for a wider range of use cases. B. Fanini et al. (2021)
reduced the data volume by 50% in WebXR using the ATON
framework, which is partially consistent with the authors’ re-
sults (73% for LOD), but the lack of integration with texture
compression limited the overall effect. In the current work,
the combination of methods yielded a more balanced result:
a reduction in render time to 2.8 s while reducing the data
volume by more than seven times. A similar optimisation
effect was demonstrated by J. Wang et al. (2022), who imple-
mented direct training of a voxel feature grid for high-pre-
cision surface reconstruction from RGB-D sequences in the
GO-Surf project. Their method combines local geometric
and visual features in a multi-level structure and provides
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fast reconstruction with minimal deviation between syn-
thesised and real data without the need for post-processing.

M. De Fré et al. (2024) showed that optimisation
through caching can reduce the number of server requests
by 70%, which is consistent with the authors’ results, but
their research focused primarily on video conferencing.
The current results for VR content showed even greater rel-
evance of this approach in interactive environments, where
repeated requests significantly affect the user experience.
M. Lim et al. (2025) achieved a 30% reduction in latency at
speeds of 2-4 Mbit/s in the WIDE-VR project, but their sys-
tem was optimised for a wider range of network conditions.
In contrast, this study showed that under narrow con-
straints (<2 Mbit/s), the efficiency can be even higher: FPS
increased from 24 to 60, and response time was reduced
by more than half, making the approach more relevant for
weak network environments. Similar results in terms of la-
tency reduction were confirmed by S. Uddin et al. (2025),
who investigated the effectiveness of low-latency adap-
tive bitrate algorithms within the framework of Hypertext
Transfer Protocol adaptive streaming and showed that such
algorithms provide a consistently high quality user experi-
ence even with fluctuations in network bandwidth.

Similar parallels can be found in the work of I. Ye-
regui et al. (2025), who investigated the optimisation of
VR environments in the context of 5G networks. Although
their results demonstrated a high level of adaptation and
reduced latency thanks to network infrastructure, the au-
thors of the current study focused on a more universal
scenario — browser limitations, where 5G is not always
available. This revealed a difference in areas of appli-
cation: their approach is geared towards technological-
ly advanced environments, while the authors’ approach
has practical value even in countries with lower quality
network services. According to the results of W.J. Kim &
B.B.Khomtchouk (2024), processing was accelerated by 63%
thanks to WebAssembly. Although their work did not cover
LOD or texture compression, it demonstrated the promise
of combined technologies. The current results showed that
combining traditional optimisations with modern tools
such as WebAssembly or WebGPU can provide even better
results, which is consistent with the system optimisation
approach proposed by D. Honcharenko et al. (2023), who
used multi-criteria analysis to select optimal technologies
in IoT systems for monitoring physical indicators. In this
sense, the authors’ approach laid the foundation for future
research, where classical methods will be integrated with
new web technology standards.

It is also important to note the results of the study
by C. Slocum et al. (2021), who presented the VIA system
with selective loading of only those 3D objects that are
in the user’s field of view. This made it possible to reduce
the scene rendering time by 50% at speeds of about 10
Mbit/s. However, this approach proved to be less effective
in low-bandwidth scenarios, where the load remains sig-
nificant even with partial model loading. The authors’ re-
search showed that a combination of LOD, delta updates,

and texture compression allows for greater flexibility. This
indicates that the proposed approach can be effective in a
wider range of network conditions and be more resistant
to extreme constraints than traditional visibility methods.

Thus, the authors’ combined approach not only sur-
passes individual solutions in terms of versatility, but also
demonstrates better adaptability to low-bandwidth con-
ditions. This has been confirmed by direct comparisons
with previous works: while other researchers have mostly
tested systems in environments with medium or high net-
work speeds, the current study has shown that even under
minimal conditions (<2 Mbit/s), a significant performance
improvement can be achieved without compromising the
quality of the user experience.

Conclusions

The study evaluated methods for optimising WebVR appli-
cations for browsers under low bandwidth conditions (less
than 2 Mbit/s). Experiments using the Three.js and A-Frame
libraries confirmed that a combination of dynamic LOD re-
placement, texture compression in .basis format, and del-
ta updates with caching via Service Workers significantly
improves performance. The first render time was reduced
from 12.4 to 2.8 seconds, the amount of data transferred
was reduced from 24 MB to 3.1 MB, and the frame rate sta-
bilised at 60 FPS on devices with a weak graphics core (Intel
UHD) at network speeds of less than 1 Mbit/s. The use of
LOD with initial loading of simplified models (3-5 thou-
sand polygons) and asynchronous addition of detailed ones
(up to 100 thousand polygons) ensured fast initial render-
ing. Compression of .basis textures reduced their size by
6-8 times, which reduced loading delays by 80%, as shown
by measurements using performance.now.() Delta updates
reduced the amount of data to 40-60 KB per frame, which
proved to be effective for dynamic scenes. The combination
of these methods outperformed individual approaches, en-
suring stable performance. Additionally, analysis of the
results showed that the combined approach allowed main-
taining a stable frame rate even when the number of objects
in the scene was increased to 15, confirming its scalability.
It was also found that the use of simplified 256 x 256 pixel
normal maps reduced peak GPU loads by 30%, and optimis-
ing shaders by limiting light sources to two reduced graph-
ics processing time by 20% compared to the initial settings.
Prospects for further research include integrating machine
learning to predict network conditions and using WebGPU
to accelerate graphics processing in browsers, which could
further reduce latency and improve rendering quality.
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AHOTALAA. AKTya/JbHICTh AOCTIIKEHHs MMOJiAraga y HeobXimHOCTI MifBuUIeHHs MpomyKTMBHOCTI WebVR-momaTkiB
y Gpay3epHuX cepedoBMIIAX 3a YMOB OOMEXKEHOI MPOITYCKHOI 3JaTHOCTI Mepexi, 10 € BasKIMBUM [JIsI KOPUCTYBAYiB i3
MOBiIbHMM 260 HecTabiTbHUM iHTepHeT-3’€qHaHHSIM. MeToo poboTu Gysna po3pobka i ouiHka edheKTUBHUX METOLIB, SIKi
IO3BOJISIIOTH 3MEHILIUTHM Yac 3aBaHTakKeHHs ClLieH, ONITUMI3yBaTy 0OCAT MepefaBaHuX AAHUX Ta MiATPUMYBATU CTAOITbHY
YacTOTy KagpiB 6e3 3HIDKEHHS SKOCTi B3aemofii. [Isl MOCTiIKeHHSI 3aCTOCOBAHO €KCIIEpYMEHTa/IbHe MOJIETIOBaHHS
cepemoBMIIA BipTyaabHOI peanbHOCTi i3 BUKOPUCTAHHSIM 0OMeskeHMX ITapaMeTpiB Mepexi. B po60Ti BUKOPUCTAHO BiIKPUTI
6i6mioTekn Ay TpMBUMIpPHOI rpadiky 3 MOKIMBICTIO MPOrPeCUBHOTO 3aBaHTaXeHHs1 3D-pecypciB. PeanizoBaHo Ta
MOPiBHSHO JIeKiJIbka MEeTO/IiB ONTUMi3allii, 30KpeMa 6araTopiBHEBe [IeTaIOBAaHHS MOJe/eN, BifKIageHe 3aBaHTaKeHHS],
CIIPOILIeHHSI reoMeTpii Ha cepBepi, KOMIIPeCiio JaHUX i AeKOMIIpecito TekeTyp. OLiHI0BaHHS e(eKTUBHOCTI TPOBOLMUIIOCH 38
MOKa3HMKaMM Yacy 3aBaHTaskeHHsI, 06¢siry epegaHoro Tpadiky, INIaBHOCTI BiATBOPeHHS Ta BiAryKy cucteMu. Pe3yabraTu
JIOCTiIKeHHST TIPOIeMOHCTPYBAIM, L0 TIOE€AHAHHSI 6AaraTOpiBHEBOTO AETANIOBAHHS 3 CTUCHEHHSIM TEeKCTYp H03BOJISIE
CKOPOTUTHU OOCST TepefaHux gaHux no 70 % 6e3 mMomiTHOI BTpaTu SIKOCTi 300paskeHHS. BusiB/ieHO, 1110 BUKOPUCTAHHS
MIPOrPeCUBHOTO 3aBAaHTAKEHHS 3HAYHO 3HIKYE Yac MepPBMHHOTO BifoOpaskeHHS CLIeHM, KeIIyBaHHSI Ha OO KiieHTa
3MeHIIye MoBTOpHMIT Tpadik Ha 90 %. HajtedeKTMUBHILIIO BUSIBUIACS CTPATETISI TOYATKOBOTO 3aBaHTAXK@HHS CIIPOIEHMUX
Mopesneil 3 MOJAAbIIMM aCMHXPOHHMM AOAABAHHSIM JeTaabHUX O0’€KTIiB, 10 MiATPMMYE CTabiibHYy POOOTY HaBiTh 3a
HM3bKOI MIBUJIKOCTI iHTepHeTy. IIpakTuyUHa LiHHICTh TOJNATA€ y 3aCTOCYBAaHHI PO3POOGIEHMX METOAIB IpPU CTBOPEHHI
WebVR-nonaTkiB 1751 OCBiTH, MeIMLIMHM, TOPTiBJi Ta pO3Bar, 0COOMMBO B YMOBaX 0OMeKeHOTO iHTepHeT-3’¢fHaHHSI. Le
CTIpUSIE PO3LIMPEHHIO ayIUTODii Ta 3HMKEHHIO BUTPAT Ha iHOPACTPyKTypy

KrtouoBi cnoBd: WebXR; nporpecusHe 3aBanTaxkedss; LOD; KelryBaHHs ; CTMCHeHHs TeKcTyp; Three.js; A-Frame
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