
Introduction
Rapid urbanisation and the saturation of transport infra-
structure require cities to adopt flexible digital solutions 
capable of handling large-scale data streams in near real 
time. Traditional monolithic approaches do not provide 
the necessary scalability, fault tolerance, or speed of de-
ployment. By contrast, a microservice architecture, com-
bined with web technologies and contemporary analytics, 
enables the development of manageable, transparent, and  
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Abstract. The relevance of the research arises from the growing load on urban transport infrastructure, the need 
for digital transformation of mobility management, and the implementation of intelligent data analytics technologies 
operating in real time. Such a system enables prompt responses to changes in traffic conditions, improves the efficiency 
of the route network, and enhances the overall quality of urban transportation services. The purpose of the study was 
to design the architecture of a web system that ensures the integration of data from city application programming 
interfaces, their automated processing, analytical interpretation, visualisation of results, and centralised configuration 
management. The methodological basis of the research included approaches of systems analysis, data flow modelling, 
the construction of entity-relationship diagrams, and the use of architectural design patterns to represent the structural 
and functional interaction of components. The article presented the development of a conceptual model of a web-
based system for managing traffic flows in an urban environment, designed according to the principles of microservice 
architecture. The research outcome was the creation of a structural model of the system comprising five interrelated 
microservices: integration with city application programming interfaces (Node.js), data processing and aggregation 
(Python, Redis Streams), an analytical module with machine learning algorithms (Scikit-learn), a visualisation module 
(React, Mapbox, Chart.js), and a service for access control and configuration management. The paper provided a detailed 
description of their interaction logic, scaling mechanisms, and reliability assurance. The practical value of the study lied 
in the development of a universal architectural framework for implementing systems of analytics and monitoring of urban 
transport, which may serve as a prototype for intelligent mobility management platforms within the Smart City concept
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reproducible systems for traffic flow management at the 
urban scale. In this context, articulating a concept that 
links data acquisition, processing, analytics, and presenta-
tion within a coherent architectural frame becomes essen-
tial for reproducibility and future scaling.

Ukrainian and international scholars are actively ad-
vancing research on web architecture, microservices, traf-
fic flow management, visual analytics, and the Smart City 
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Building on systems analysis, O.  Barabash  et al.  (2021) 
decomposed the urban transport system, developed a 
road-safety profile, and outlined criteria for flow efficiency, 
while separately highlighting the role of, and risks posed 
by, telecommunication threats. Their “traffic safety profile” 
concept suggested a morphology of factors (network de-
sign, intersection typology, pedestrian streams) that can be 
encoded as domain ontologies and used for rule-based di-
agnostics in tandem with predictive models. Y. Fornalchyk 
& V. Hilevych (2023) demonstrated that increasing motor-
isation correlates with higher accident rates, noise, and 
emissions, and substantiated a transition towards an arti-
ficial-intelligence-enabled transport network with central-
ised monitoring as a viable direction for mitigation. This 
evidence strengthened the case for city-wide coordination 
layers in the architecture (control plane plus monitoring 
plane) to mitigate externalities of motorisation through 
proactive forecasting and targeted control policies.

Y.  Yu  et al.  (2025) systematised visual analytics tech-
niques for heterogeneous mobility data, highlighting, among 
the principal visual objects, origin-destination maps, a 
range of progressive analytics methods, and inclusive inter-
face designs. Their InclusiViz system combined deep models 
(Deep Gravity-style) with explainable analytics and what-if 
tooling, indicating how a traffic platform may evolve from 
descriptive dashboards to prescriptive, simulation-backed 
decision support with multi-level views (city-wide to neigh-
bourhood). A. Wibowo et al. (2024) proposed the MxT mod-
el, which integrates streams from the X social network to 
detect obstructions and enable rapid route adjustments; 
their results reported over 91.6% detection accuracy and 
approximately a 15% reduction in travel time. This illus-
trated a viable “social sensing” microservice that enrich-
es sensor feeds during disruptions (floods, protests), with 
grounding via ground-truth validation – an approach trans-
ferrable to European cities with similar incident typologies. 

Building on the outlined problematisation, the study 
aimed to propose a coherent conceptual model of a web-
based traffic flow management system for the urban en-
vironment, grounded in microservice architecture, which 
aligns data acquisition and integration with their analyt-
ical interpretation, visualisation, and the administrative 
management of configurations. 

Materials and Methods
This article presented an original conceptual model de-
veloped within a design-science approach. The research 
methodology comprised several consecutive stages. Based 
on a review of publications and practical cases in urban 
mobility management, the functional zones of the sys-
tem were identified: data acquisition and integration, data 
processing and aggregation, analytics, visualisation, and 
access and configuration. These zones were then used as 
criteria for the architectural design. The system was de-
composed into five microservices that correspond to these 
zones, and their structure and interactions are described in 
the sections devoted to individual microservices. For each 

paradigm. Ukrainian researchers M.  Kotenko  et al.  (2024) 
have systematised security practices for microservice ar-
chitecture – including service mesh, mutual Transport Lay-
er Security, Zero Trust, and Development, Security, and Op-
erations – demonstrating their practical value for building 
secure, distributed web systems. Their work emphasised 
layered defences (isolation, Application Programming In-
terface (API) gateways, policy-based access) and showed 
how service mesh patterns reduce the attack surface and 
centralise traffic governance in distributed environments, 
which is crucial for city-scale web platforms handling 
personal mobility data. D. Volkov & V. Liubchenko (2024) 
provided a review of threats and protection strategies for 
microservices and identified gaps in their application; 
their study underscored the importance of comprehen-
sive risk-management approaches within microservice 
architecture and established a methodological foundation 
for the secure integration of urban transport services. In 
particular, they highlighted the absence of universal threat 
models for microservices and advocate STRIDE-oriented 
(Spoofing, Tampering, Repudiation, Information disclo-
sure, Denial of service, Elevation of privilege) analysed 
coupled with container hardening and secure inter-service 
communication, aligning well with transport systems that 
must assure integrity and availability during peak loads 
or incidents. Y. Matseliukh & V. Lytvyn (2024) proposed a 
model for analysing passenger flows in low-carbon trans-
port within a Smart City, and outlined a sequence of data 
sources and open datasets that are particularly useful for 
urban transport visualisations. Their correlation-regres-
sion analysis connected passenger throughput with CO2 
emissions, motivating analytics modules that not only 
forecast flows but also assess ecological impact; this di-
rectly informs key performance indicators sets for dash-
boards in a traffic management web system (e.g., trip time, 
occupancy, emission proxies). Y.  Ohonovskyi  et al.  (2023) 
presented a prototype of an information system for moni-
toring and content analysis of citizens’ appeals in a Smart 
City context, with an emphasis on web-oriented integra-
tion of municipal services. The proposed ideas proved 
suitable for composing a web platform for flow manage-
ment with modular integration of urban data. This citi-
zen-feedback channel complements sensor data: incident 
reports, complaints, and requests create additional signals 
for congestion detection and service prioritisation, which 
a microservice platform can ingest via dedicated ingestion 
and natural language processing services. A.  Danyliuk & 
O. Muliarevych (2024) examined approaches to traffic con-
trol, including Cyber-Physical Systems/Internet of Things 
(CPS/IoT) solutions and elements of artificial intelligence; 
these approaches helped to establish the algorithmic con-
text for the analytical microservice of the web system. 
Their surveys of adaptive signal control and parameter sets 
(speed, density, volume) provided a catalogue of measur-
able features that can be operationalised in forecasting 
pipelines, while the CPS perspective clarifies integra-
tion patterns with roadside devices through secure APIs.  
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functional zone, a set of entity-relationship (ER), data-flow 
diagrams (DFD) and context-container-component-code 
(C4) diagrams was prepared to capture the domain struc-
ture, information flows and boundaries of microservice re-
sponsibility. The final stage was a qualitative comparison 
of candidate analytical tool stacks (Python, R, Excel/Power 
BI) using criteria such as performance, scalability and suit-
ability for integration into a microservice architecture. 

The conceptual model was developed as a sequential 
architectural design process with the key artefacts explicit-
ly documented. The architectural solution followed a “con-
text → containers → components” approach. Microservices 
were distinguished for integration with municipal APIs 
(data ingestion and dissemination), data processing and 
aggregation (validation, normalisation, and consolidation 
of indicators), analytics (calculation of indicators and sup-
port for forecasting algorithms), visualisation (maps and 
charts for presenting results), and access and configuration 
management (centralised settings and access rights). For 
each microservice, public interfaces and message exchang-
es were specified to ensure independent evolution of com-
ponents and their scalability.

In constructing the conceptual model, the focus was 
on defining data schemas, interfaces and information 
flows at the architectural level. No concrete test datasets 
or quantitative experiments with real or synthetic records 
were designed within this study. In the conceptual model, a 
separate functional zone is formed by the results visualis-
ation layer, which is responsible for presenting aggregated 
and analytical data in a clear form for different groups of 
users. To provide a coherent representation of the struc-
ture and information flows, a domain ER diagram was 
created (routes, stops, vehicles, traffic events, indicators/
forecasts, users/roles, configurations), as well as DFD for 
levels 0-2 (the main channels of data ingestion, processing, 
and delivery) and a C4 diagram that shows microservice 
responsibility boundaries and their interactions. Together 
with interface specifications and data format descriptions, 
these diagrams enable other researchers to reproduce the 
proposed model under comparable conditions. The repro-
ducibility of the solution was supported by documenting 
interface schemas, canonical definitions of indicators, and 
typical configurations, so that equivalent deployments 
can be implemented in different urban contexts without 
changing the underlying architectural principles. 

Results and Discussion
Municipal API integration microservice. The system 
comprises distinct microservices, each responsible for a 
specific set of functions: integration with municipal APIs, 
data processing and aggregation, analytical computation, 
results visualisation, and configuration management. The 
municipal API integration microservice is intended to in-
gest, process, and preliminarily validate data on intra-ur-
ban traffic flows. Its primary task is envisaged to be the 
establishment of stable communication with external ser-
vices that are expected to provide up-to-date information 

on public transport movements, routes, timetables, and 
potential delays. In the conceptual model, the microservice 
is designed to perform regular or event-driven requests to 
designated APIs, as discussed by A. Bokolo (2025), who em-
phasised the role of RESTful integration patterns for Smart 
City data exchange, ensuring the processing of received 
data and their transformation into an internal format suit-
able for further analytical interpretation. 

Introducing a dedicated microservice for API integra-
tion is meant to enable high flexibility when data sources 
or response formats change, while minimising the impact 
on other components of the web system. Moreover, isolat-
ing data acquisition into an independent service is intend-
ed to enhance the solution’s scalability and to simplify its 
maintenance; G. Şahin et al. (2024) outlined similar bene-
fits of decoupled ingestion layers for maintainability and 
scale in municipal web systems.

In implementing the project, it is assumed that the 
developers will have access to open APIs of municipal 
transport services that provide the necessary information 
in a specified format. In particular, it is envisaged that the 
APIs support standard HTTP (HyperText Transfer Proto-
col) requests (GET method) and return responses in JSON 
(JavaScript Object Notation) containing the following key 
attributes: a unique vehicle identifier; geographic coordi-
nates (latitude, longitude); current speed; route identifier; 
scheduled arrival time at the next stop; actual timestamp of 
the latest update. The Municipal API Integration microser-
vice is positioned to play a critical role in ensuring reliable 
acquisition of traffic-flow data for subsequent analysis. Its 
principal functional components are proposed to include:

1) Initiation of requests to open municipal APIs. The 
microservice is expected to periodically issue HTTP re-
quests (predominantly via the GET method) to designat-
ed municipal API endpoints to retrieve vehicle locations, 
routes, and timetables. A standardised REST architecture 
is intended to underpin this integration, consistent with 
contemporary Smart City practice; A. Bokolo (2025) under-
scored that consistent REST conventions improve interop-
erability and reduce coupling across civic data services.

2)  Validation and verification of received data. Re-
sponses are to be checked against the expected structure, 
including the presence of mandatory fields (vehicle identi-
fier, coordinates, speed, update time). In the event of mal-
formed or incomplete records, the microservice is expected 
to filter them out to maintain a high level of information 
quality; I.M. Leghemo et al.  (2025) drew attention to sys-
tematic quality gates for API-delivered mobility streams.

3) Transformation into an internal unified format. To 
ensure interoperability, data obtained from heterogeneous 
APIs are intended to be normalised to a predefined schema. 
This is meant to prevent errors during subsequent process-
ing and visualisation.

4) Error handling and resilience. When an external API 
is unavailable or returns an invalid response, the micros-
ervice applies retry mechanisms with exponential backoff 
and emits error notifications for downstream auditing.
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5) Real-time or scheduled data refresh. The microser-
vice is designed to support both event-driven processing 
(e.g., upon receipt of an update signal) and periodic data 
collection at a configured interval, which is expected to en-
able optimisation of system load.

Thus, the integration microservice is expected to en-
sure reliable ingestion, validation, and preparation of 
transport data for subsequent analytical and visualisation 
processes within the web-based traffic flow analysis sys-
tem. Implementing the municipal API integration mi-
croservice is assumed to require technologies capable of 
sustaining high throughput under large volumes of con-
current requests, offering flexibility in API handling, and 
ensuring robust data processing. Following a comparison 
of several technology stacks, the development would adopt 
Node.js with the Axios library for issuing HTTP requests. 
This choice is justified by Node.js’s efficiency in handling 
asynchronous calls through its non-blocking I/O mod-
el, as highlighted by B.S.  Beeraka  (2025), who associated 
event-driven runtimes with high-frequency HTTP work-
loads in urban analytics, which is considered critical for 
tasks characterised by high-frequency data exchange.

The chosen Node.js technology is expected to enable 
the microservice requirements to be met effectively in 
terms of request processing speed, ease of API integra-
tion, and scalability under increasing load. A conceptual 
container diagram (Fig. 1) is intended to illustrate the ar-
chitecture of the municipal API integration microservice 
implemented in the proposed stack. In this diagram, the 
microservice establishes connections to external APIs, 
handles requests, transforms data into the internal format, 
validates the retrieved information, and persists it for sub-
sequent processing within the traffic flow analysis system.

Figure 1. Container diagram  
of the Municipal API Integration microservice

Source: designed by the authors

Table 1. Comparison of analytical tools for implementing a web system

receive consistent, high-quality records. Operationally, 
the service is envisaged to support both scheduled and 
event-driven refresh modes, enabling cities to balance la-
tency against load. By isolating acquisition concerns and 
exposing a narrow, well-typed interface, the microservice 
is intended to simplify maintenance, support independent 
scaling, and reduce the blast radius of upstream changes. 
Collectively, these properties are expected to improve re-
liability and to create a robust foundation for subsequent 
aggregation, analytics, and visualisation.

Data processing and aggregation microservice. The 
data processing and aggregation microservice is a key com-
ponent that is intended to perform the initial processing of 
data received from the Municipal API Integration micros-
ervice. E.  Puzio  et al.  (2025) described analogous staging 
of pre-analytics pipelines for transport feeds, which moti-
vates the separation of ingestion and cleaning as a distinct 
service layer. Its primary purpose is to render the data into 
a structured form suitable for subsequent analysis, storage, 
and visualisation. This is envisaged to be achieved by filter-
ing out malformed or incomplete records, normalising val-
ue formats (e.g., time and coordinates), consolidating data 
by routes, vehicles, or time intervals, and computing basic 
aggregates (such as average speed and mean delay). Thus, 
the microservice is positioned to serve as a buffer between 
raw, unprocessed data and the analytics modules, provid-
ing a reliable, high-quality foundation for all subsequent 
computations within the system.

Within this microservice, it is assumed that the input 
arrives as structured JSON objects from the preceding inte-
gration microservice and contains the following attributes: 
a unique vehicle identifier; a route identifier; the data cap-
ture time in Coordinated Universal Time (UTC); location 
coordinates; current speed; delay, in minutes, relative to 
the timetable. Based on the input data, aggregation is in-
tended to be performed by routes; by time intervals; by ge-
ographical zones. As a result, analytical slices are expected 
to be produced that include, inter alia: average speed on a 
route over the selected period; frequency of stops or delays; 
number of active vehicles at a given moment. After aggre-
gation, the data are to be stored in a standardised internal 
format (e.g., as JSON objects or database tables), facilitat-
ing seamless integration with subsequent system modules 
(analytics and visualisation). The Power BI Communi-
ty (2021) outlined practical constraints of spreadsheet-cen-
tric pipelines for streaming data, and N.O. Quesado Filho et 
al.  (2025) contrasted dashboard tooling with code-first 
stacks, which together support the decision to separate 
Extract-Transform-Load (ETL)-like routines from end-user 
visualisation layers. A comparison of these options accord-
ing to the criteria of performance, flexibility, scalability and 
support for machine learning tools is provided in Table 1.

City API integration service 

API-client 

Data 
transform 

Validation

City 
API 

Request library 
Request

Respon

In summary, the municipal API integration micros-
ervice is intended to provide a stable, configurable entry 
point for mobility data, decoupling external API variability 
from the system’s internal contracts. Its design is expected 
to prioritise ingest throughput, schema normalisation, and 
explicit error-handling paths so that downstream services 

Criterion Python R Excel / Power BI
Computing performance High (vectorisation, NumPy) Average, good for statistics Low, not suitable for large volumes

Libraries for machine learning/AI Scikit-learn, XGBoost, Prophet Caret, GTFSwizard, Forecast Minimum (statistics only)
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Although R is noted to have a few quality libraries 
for analysing GTFS transport data (e.g.,  GTFSwizard), its 
weaker representation in microservices and web integra-
tion ecosystems is assumed to limit its use for real-world 
deployment of transport analytics. Using Excel/Power BI 
is considered justified in cases of visual data analysis for 
non-specialists, however, this approach does not scale, of-
fers limited automation, and does not support the flexible 
application of machine learning algorithms. Python is con-
sidered to have an advantage in all key aspects: computa-
tional speed, support for machine learning libraries; inte-
gration with infrastructure components (FastAPI, Celery); 
flexibility of spatial analysis (GeoPandas, Shapely).

For implementing the data processing and aggregation 
microservice, the Python language was selected conceptu-
ally, as its libraries are intended to provide high efficiency 
when working with data arrays – specifically, pandas for 
tabular processing, NumPy for numerical operations, and 
datetime for time-interval manipulation. Python is chosen 
for its optimal balance between syntactic simplicity, a broad 
toolkit for data analysis, and straightforward integration 
with streaming solutions (e.g.,  Redis Streams or Apache 
Kafka). Compared with other languages (such as Java or 
Scala), Python is considered more suitable for prototyping 
and for flexible handling of semi-structured data, which 
are typical of transport analytics. K.Ntouros  et al.  (2025) 
emphasised the practical advantages of Python-centric 
data engineering for municipal platforms, a consideration 
reflected in the prioritisation of a lightweight but extensi-
ble stack. As the data-streaming system, Redis Streams is 
considered due to its lightweight nature, rapid deployment, 

and minimal configuration requirements. This is particu-
larly advantageous in urban settings, where the system is 
expected to operate with reduced latencies and respond 
swiftly to incoming records. F. Yang (2025) highlighted the 
utility of stream abstractions that combine event buffering 
with time-windowed aggregation, a capability mirrored by 
Redis Streams for transport-data grouping. 

The data processing and aggregation microservice is 
positioned to play a critical role in transforming raw in-
formation on traffic flows into aggregated, clean, and 
structured data that can be used directly for subsequent 
analysis and visualisation. Its architecture is intended to 
enable the efficient detection of anomalous values, the 
grouping of data by routes, vehicles, or time intervals, and 
the construction of core metrics – average speed, delays, 
and the number of active vehicles. Taken together, these 
design choices are expected to provide an optimal balance 
between performance, implementation simplicity, and ad-
aptability to data volumes, thereby delivering a scalable 
foundation for further integration with the system’s ana-
lytics and visualisation modules (Horokhovskyi & Oshovs-
ka 2015). The diagram (Fig. 2) was intended to depict the 
principal stages of transport data processing within the mi-
croservice implemented in Python, using Redis Streams as 
the streaming mechanism. Input data are assumed to enter 
Redis Streams, where they are buffered and forwarded to 
the processor. The workflow is expected to perform filter-
ing, normalisation, and aggregation, followed by grouping 
by routes, time intervals, or geozones. The aggregated re-
sults are to be stored in the internal repository (Redis JSON) 
and prepared for subsequent use by other system modules.

Table 1. Continued
Criterion Python R Excel / Power BI

Working with spatial data GeoPandas, Folium SF, Leaflet, GTFSwizard Only through external plugins
Integration into  

a microservice system High (FastAPI, Flask, Celery) Limited, harder to scale Not intended for server systems

Learning curve Moderate Moderate Low
Open code Yes Yes Partially (closed formulas)

Source: compiled by the authors

Raw data Redis 
Streams“Redis”  

Filtration Normalisation Aggregation 

By routes

By time 
intervals

By geofences

Aggregated data 
storage

Results
Processing Python 

Data processing and aggregation microservice 

Figure 2. Microservice architecture for data processing and aggregation
Source: designed by the authors

In summary, the data processing and aggregation 
microservice is intended to act as the system’s stabilis-
ing layer, converting heterogeneous, event-level inputs 
into consistent, analysis-ready datasets. Its workflow  

prioritises deterministic cleaning rules, schema normal-
isation, and configurable aggregation windows so that 
downstream modules receive comparable indicators 
across routes, times, and zones. By separating operational 
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(near-real-time) and periodic (batch) modes, the service 
is expected to balance latency with completeness and to 
prevent contention under peak loads. The explicit gener-
ation of core metrics – such as average speed, delay dis-
tributions, and active-vehicle counts – provides a minimal 
yet sufficient feature set for forecasting and visualisation. 
Collectively, these properties are intended to reduce er-
ror propagation, simplify debugging, and create a scalable 
foundation for the analytical and presentation layers.

Analytics microservice for urban transport analyt-
ics and forecasting. The analytics microservice is a key 
component of the web-based traffic flow analysis system, 
as it is intended to enable the transition from aggregated 
data to practically meaningful insights. This component is 
designed to process cleaned and structured data to identi-
fy patterns, forecast problematic segments, and formulate 
hypotheses for improving the city’s route network. In con-
trast to the Data Processing and Aggregation microservice, 
the analytics module is oriented not only toward handling 
current values but also toward generating conclusions that 
may have strategic significance for urban mobility plan-
ning. The analytics microservice is assumed to perform in-
telligent processing of aggregated transport data to detect 
anomalies, derive performance indicators, and generate 
forecasts of load across the city’s route network. It oper-
ates conceptually on data prepared by the preceding micro-
services, which are expected to supply cleaned, structured 
time-series information on vehicle movements.

The microservice is designed to perform in-depth an-
alytics of transport data, specifically: detecting conges-
tion and zones of heightened traffic intensity; analysing 
deviations from timetables and delays in public transport; 
computing route efficiency metrics (e.g., load factor, aver-
age travel time); producing baseline forecasts of delays or 
route load for specified periods; generating a set of rec-
ommendations (hypotheses) for the optimisation of the 
transport network. Thus, the analytics microservice is in-
tended to provide the intelligent data processing required 
for well-founded managerial decisions in urban transport. 
Within the analytics microservice, it is assumed that the 
inputs are the aggregated and normalised datasets pro-
duced by the preceding Processing and Aggregation mi-
croservice. These data are expected to be error-cleaned, 
structured by key parameters, and ready for analytical in-
terpretation. A basic input structure may be represented as 
a table or as JSON objects with the following records: route 
identifier; time interval; average speed on the route for the 
corresponding interval; average deviation from the time-
table; number of vehicles on the route; route load factor; 
territorial zone or city sector. All records are to be gener-
ated with a uniform temporal step, which is intended to 
enable the construction of time series, the application of 
cluster or correlation analysis, and the assessment of indi-
cator dynamics over time.

One of the module’s principal functions is envis-
aged to be the detection zones of heightened traffic 
load – that is, segments characterised by persistently low  

average speeds combined with a high number of vehicles. 
To this end, filters are intended to be applied to identi-
fy critical speed thresholds, or cluster analysis is to be 
employed to delineate typical traffic situations across 
the city. A.O. Oyenuga et al. (2025) described comparable 
urban-mobility analyses that translate such clusterings 
into resource-allocation signals for city operations, which 
informs the choice to keep the feature space compatible 
with route-level interventions. Another function of the 
microservice is proposed to be the analysis of deviations 
from public transport timetables. For this purpose, the mi-
croservice is expected to compare the actual and sched-
uled times at stops. The results are intended to enable an 
assessment of delay levels by day of the week and by time 
interval, to identify peak periods of instability, and to lo-
calise zones where timetable violations are systematic. 
Where additional data become available, such as weather 
or event calendars, these factors are intended to be incor-
porated as covariates in regression-style models, following 
practice outlined by E. Erişkin (2024) for transport-policy 
evaluation. A dedicated functional block is assumed to be 
responsible for computing route efficiency, including the 
calculation of average travel time, a regularity coefficient 
(the ratio of actual to scheduled arrivals), speed variance, 
and route load levels across different times of day. These 
indicators are intended to allow for a quantitative assess-
ment not only of the stability but also of the predictability 
of public transport operations.

In subsequent iterations, the microservice is in-
tended to incorporate a forecasting module for delays or 
congestion. This can be achieved by building time-series 
models (e.g.,  Seasonal AutoRegressive Integrated Mov-
ing Average – SARIMA) or by applying machine-learning 
methods (such as linear regression or eXtreme Gradi-
ent Boosting (XGBoost)) to predict metric values for the 
subsequent hours or days. N.  Schetakis  et al.  (2025) dis-
cussed short-term transport forecasting pipelines where 
classical time-series baselines remain competitive under 
constrained data, which motivates the decision to stage 
SARIMA alongside tree-based learners. S.A.  Inamdar & 
S.S.  Kulkarni  (2025) explored quantum-inspired variants 
for near-term improvements; in the case of this article, 
such methods are regarded as future options once a stable 
benchmark is established. The final stage of the analytics 
microservice is envisaged to involve generating hypothe-
ses for the optimisation of the transport network. Drawing 
on analyses of congestion, delays, and related metrics, the 
microservice is expected to propose adjustments to the 
route network – for example, relocating or adding stops, 
modifying headways, or introducing additional servic-
es during peak hours. All hypotheses are intended to be 
logged and prioritised by criticality, with forwarding to an 
administrative console for expert review. Thus, the analyt-
ics microservice enables the transition from aggregated 
data to concrete managerial conclusions that may be ap-
plied both to the tactical regulation of traffic and to the 
strategic planning of urban mobility.
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The diagram (Fig. 3) was intended to depict the struc-
ture for processing aggregated transport data within the 
analytics microservice. Input data in JSON or comma-sep-
arated values (CSV) format are assumed to be received 
from the preceding Processing and Aggregation module. 
In the first stage, key metrics are expected to be comput-
ed (average speed, delays, traffic intensity), after which  

congestion and unstable routes are intended to be iden-
tified. Where required, the forecasting module is planned 
to be activated, employing machine-learning or time-se-
ries algorithms. The final stage is intended to generate 
hypotheses for improving the route network. The results 
are to be passed, as structured JSON objects, to the subse-
quent components of the system.

Figure 3. Analytical microservice architecture
Source: designed by the authors
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For the implementation of the analytics microservice, 
a technology stack is proposed that is oriented towards 
efficient handling of tabular and time-series data, mathe-
matical modelling, and machine learning. Python is posi-
tioned to serve as the primary implementation language, 
being widely adopted in urban and transport analytics and 
allowing a rapid transition from prototypes to reproducible 
pipelines. Y. Yu et al. (2025) illustrated how Python ecosys-
tems – pandas for feature engineering and scikit-learn for 
modelling – can underpin multi-level mobility visualisation 
with explainable components, which aligns with design of 
this study for a modular analytics layer. The suite of special-
ised Python libraries is intended to enable both basic sta-
tistical processing and more advanced models for analysing 
temporal trends and forecasting. In particular, the Inclu-
siViz line of work by the same authors demonstrated that 
code-first stacks facilitate consistent metric definitions 
across maps and charts, an approach authors of this study 
planed to mirror to maintain indicator reproducibility.

In the domain of policy-facing forecasting and opti-
misation, E. Erişkin (2024) showed that Python pipelines 
can blend behavioural covariates (e.g.,  weather, event 
calendars) with machine-learning baselines for trans-
port strategy appraisal; the feature space is therefore 
planned to remain extensible so that such covariates can 
be incorporated without altering service boundaries. For 
real-time or near-real-time processing, the analytics mi-
croservice is intended to interface with streaming sources 
(e.g., Redis Streams), or to operate on periodically updat-
ed JSON/CSV files or tables supplied by the preceding mi-
croservice. F.  Yang  (2025) emphasised the advantage of 
stream abstractions that combine event buffering with 
windowed aggregation; this insight motivates authors’ 
choice to expose time-window parameters at the config-
uration level so that cities can tune latency versus com-
pleteness. The selected stack is expected to enable the 
processing of large volumes of transport data, the scal-
ing of computations as load increases, and the seamless  

integration of the results with the system’s visualisation 
and administration microservices.

To support spatial analysis, the stack is intended to in-
clude GeoPandas for topology-aware joins and Shapely for 
geometric operations, enabling, for instance, corridor-lev-
el congestion detection and zone-based aggregation 
without bespoke Geographic Information System (GIS) 
servers. K.  Ntouros et al.  (2025) argued for lightweight, 
Python-centric data engineering in municipal platforms, 
noting that such stacks reduce operational overhead 
while preserving extensibility; this perspective underlies 
authors’ preference for a lean but composable toolchain. 
Where higher-throughput ingestion becomes necessary, 
the microservice boundary is planned to admit Kafka-style 
brokers, yet the baseline remains deliberately minimal to 
keep deployment attainable for smaller cities.

Model selection for short-term forecasting is intend-
ed to balance classical time-series methods (e.g., SARIMA) 
and non-linear learners (e.g., gradient-boosted trees such 
as XGBoost) so that the system can operate under both 
scarce-data and richer-feature scenarios. N.  Schetakis  et 
al.  (2025) reported that well-tuned classical baselines re-
main competitive when observation windows are short or 
sensors are uneven, which informs authors’ decision to 
stage SARIMA alongside machine-learning alternatives 
rather than replacing them outright. Exploratory tracks, 
including quantum-inspired variants discussed by S.A. In-
amdar & S.S. Kulkarni (2025), were considered future op-
tions once deterministic benchmarks are established and 
validated against municipal ground truth. Taken together, 
the proposed Python-first stack is intended to provide a 
pragmatic compromise: rapid prototyping for research it-
erations, explicit contracts for service integration, and a 
clear path to scaling analytics as cities expand data cover-
age and latency expectations.

In summary, the analytics microservice is intended to 
convert cleaned, aggregated streams into decision-ready 
insights by combining descriptive indicators, anomaly 
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detection, and short-term forecasting within one con-
figurable pipeline. Its design is expected to preserve re-
producibility through uniform time steps, stable metric 
definitions, and explicit feature schemas, while accom-
modating both near-real-time updates and periodic batch 
analyses. By emitting compact outputs – congestion flags, 
timetable-stability scores, route-efficiency metrics, and 
ranked optimisation hypotheses – the service is positioned 
to support both operational interventions and longer-ho-
rizon planning. Clear JSON contracts and stateless execu-
tion paths are envisaged to ease integration with visual-
isation and administrative layers, enabling independent 
scaling as data coverage grows. Collectively, these proper-
ties are intended to improve interpretability, shorten feed-
back loops for transport managers, and provide a robust 
analytical core for the overall system.

Visualisation microservice for interactive urban 
mobility dashboards. The visualisation microservice is 
intended to serve as the terminal presentation layer for 
all processed information in the system, transforming an-
alytical and aggregated data into clear, interactive visual 
components. Its principal aim is to provide convenient, in-
tuitive access to complex transport information for a broad 
range of users – from municipal analysts to ordinary citi-
zens and transport operators. D.M. Kozachenko et al. (2025) 
argued that user-centred map interfaces improve decision 
latency for operational staff, which underpins the choice 
to emphasise rapid situational awareness over purely ex-
ploratory views. The scope of responsibility is proposed 
to include building interactive maps with public transport 
routes, congestion, and stops; displaying charts of head-
ways, average speed, delays, and passenger volumes; gen-
erating heat maps of transport load across different times 
of day; presenting graphical analytics outputs in the form 
of diagrams, histograms, and time series.

Thanks to this microservice, users are expected to be 
able to review the current state of the transport situation, 
analyse its dynamics, compare data across periods, detect 
anomalies, and support well-founded decisions. Within the 
visualisation microservice, inputs are assumed to arrive 
from the analytics microservice and from the store of ag-
gregated data. These inputs adhere to a standardised for-
mat suitable for subsequent rendering in the web interface. 
The data are intended to be provided as Geospatial JSON 
(GeoJSON) objects for mapping routes, stops, and vehicles; 
JSON tables or arrays for time charts, delays, and traffic 
intensity; heat-map arrays for constructing density layers 
based on coordinates and event counts; and timestamps for 
building dynamic visualisations. Y.  Yu  et al.  (2025) high-
lighted that mobility dashboards benefit from multi-level 
drill-downs and explanations attached to visual primitives; 
indicator definitions and tooltips are therefore planned 
to be exposed that tie back to analytical computations. 
Y. Cao et al.  (2025) demonstrated that heat-map overlays 
are effective for temporal crowding patterns, which moti-
vates the inclusion of configurable time windows and col-
our scales for peak-hour exploration.

To align with digital-twin practices, B.P. Rafamatanant-
soa et al. (2024) described City2Twin’s separation of stat-
ic 3D context from dynamic streams; the visual layer is 
planned to respect this separation by treating basemap and 
dynamic indicators as distinct sources, enabling smooth 
playback and reduced redraw overhead. H.A.  Adrianto  et 
al.  (2024) showed that analyst-facing dashboards benefit 
from scenario toggles and multi-chart coordination; ac-
cordingly, the microservice is intended to provide filter 
panels (route, time, zone) that trigger coordinated updates 
across maps and charts. A. Wibowo et al.  (2024) reported 
that disruption-aware overlays sourced from social streams 
shorten route-adjustment time in critical events; the de-
sign retains a pluggable “incident overlay” so that cities 
can add such feeds without altering the core renderer.

On the implementation side, the visualisation micro-
service is intended to be deployed as a separate front-end 
application that interacts with other system modules via 
a REST API. React is planned to be used as the primary 
technology, providing a component architecture with in-
cremental UI updates. For web mapping, Leaflet or Map-
box GL JS are envisaged to serve as the cartographic en-
gines; Leaflet offers lightweight vector overlays, while 
Mapbox GL enables GPU-accelerated styles and animated 
state transitions for moving objects. M. Laituri et al. (2025) 
drew attention to the value of real-time public dashboards 
during crisis response, and this is mirrored by reserving a 
“live mode” that prioritises update cadence and progres-
sive rendering. For charts and heatmaps, Chart.js, D3.js, or 
Recharts are intended to be employed, with D3 reserved for 
bespoke interactions and Recharts for rapid composition in 
React. Where 3D context becomes a requirement, the mi-
croservice boundary is planned to admit a lightweight 3D 
scene (e.g., deck.gl) layered over the same data contracts to 
preserve consistency with 2D views.

In summary, the visualisation microservice is intend-
ed to provide a coherent, low-latency interface that turns 
complex spatio-temporal data into actionable views for di-
verse user groups. By standardising input contracts (Geo-
JSON, JSON tables, heat-map arrays) and separating map, 
chart, and filter concerns, the layer is expected to remain 
responsive under peak loads while preserving consistency 
of indicators across widgets. A focus on accessibility, pro-
gressive rendering, and clear affordances is intended to 
shorten time-to-insight for operational staff and to sup-
port reproducible analysis for experts. Through stateless 
rendering, cache-friendly assets, and explicit API bound-
aries, the microservice is positioned to scale independent-
ly of upstream analytics. Collectively, these properties are 
intended to ensure that the presentation tier strengthens 
decision-making without constraining future extensions 
such as 3D context or incident overlays.

Access and configuration management microser-
vice. The access and configuration management microser-
vice is intended to function as the administrative centre of 
the web-based traffic flow analysis system. Its primary aim 
is intended to be the provision of centralised control over 
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key system parameters and the offering of basic user au-
thentication and authorisation capabilities. This is expect-
ed to enable the delineation of access levels to analytics, 
the configuration of data refresh frequency, and the adap-
tation of the system to the needs of a specific city or trans-
port model. The functions of this microservice are pro-
posed to include: creating and managing API keys required 
for integration with municipal or third-party data sources; 
setting integration parameters: city, route network, update 
timings, filters, and time intervals; defining user roles and 
managing access rights; maintaining an audit log to ensure 
transparency of administrative actions.

Implementing this microservice is intended to ensure 
the scalability and flexibility of the entire system without 
requiring modifications to the code of the core function-
al microservices. This is particularly important when de-
ploying the system across multiple cities or under varying 
transport parameters and integration settings. The access 
and configuration management microservice is envisaged 
to perform a crucial systemic role – providing flexible ad-
ministration of all key parameters of the web system and 
enforcing access restrictions for different user categories. 
Its functionality is divided into several core blocks:

1)  API key management. The system is expected to 
provide an interface for creating, viewing, and deactivat-
ing API keys used to integrate municipal data sources. Each 
key can be associated with a specific subsystem (e.g., inte-
gration with GPS trackers or municipal portals) and con-
strained by expiry and request-rate limits.

2)  Integration parameter configuration. An adminis-
trator is expected to be able to set core configuration pa-
rameters: city, set of transport routes, source polling ca-
dence (e.g.,  every five minutes), time zone, and filters by 
transport type or city districts. These settings are intended 
to be stored centrally and propagated to other microservic-
es via a configuration API.

3) Users and access roles. A basic authentication mech-
anism (e.g.,  tokens or JSON Web Token (JWT)) and role-
based authorisation are provided. Typical roles are en-
visaged to be provided: administrator, analyst, and guest 
viewer. Each role is expected to grant access to a defined 
set of functions; for instance, only administrators are to be 
allowed to alter configuration or create API keys.

4) Audit log. All configurations are intended to be re-
corded with timestamp, author, and action type. This is ex-
pected to enable activity monitoring and to ensure trans-
parency of system governance.

This microservice is not intended to process analytical 
or cartographic data; however, it is considered critical to 
the continuous operation of the entire system and to its 
adaptation to new conditions without code changes. Its 
presence is expected to render the system scalable, mul-
ti-scenario, and centrally manageable from a single point. 
The Access and Configuration Management microservice 
presupposes an administrative console through which au-
thorised users are intended to be able to configure the sys-
tem, create API keys, manage data refresh frequency, and 

define role-based access policies. Accordingly, the primary 
technological requirement is the rapid implementation of 
CRUD functions (Create, Read, Update, and Delete) with 
minimal front-end development effort.

Description of the overall architecture of the web-
based traffic flow management system. The adoption 
of a microservice architecture is intended to enable the 
creation of a flexible and scalable transport system in 
which each component is expected to fulfil a narrowly 
specialised function. Z.  Wang  et al.  (2025) reported that 
microservice decompositions support city-scale forecast-
ing around metro stations, which aligns with the inten-
tion to keep compute hotspots independently scalable. 
C. Campos et al. (2025) argued that modelling data flows 
at the architectural level  – within oneAPI-style pipe-
lines – improves performance and manageability in mul-
ti-component systems; this view underpins the decision 
to foreground flow contracts between services. Integrat-
ing the diagrams and models within a single subsection 
is intended to ensure logical coherence and improves the 
perception of the architecture as a unified information 
space in which components are expected to operate in an 
interrelated and sequential manner.

At the architectural level, the system is envisaged to 
comprise the following principal containers:

♦ Frontend (client tier)  – intended to provide users 
with access to transport-data visualisation, interactive 
charts, heatmaps, and configuration interfaces.

♦ API Gateway/Router – intended to coordinate user re-
quests and to route them to the appropriate microservices.

♦ Microservices  – Municipal API Integration, Data 
Processing and Aggregation, Analytics, Visualisation, and 
Access & Configuration Management – intended to encap-
sulate domain-specific responsibilities.

♦ Database – intended to serve as a central repository 
for aggregated and historical data.

♦ Configuration/Logging Store – intended to hold pa-
rameters, API keys, and audit logs.

Each microservice is intended to be deployed inde-
pendently, allowing only those components under load 
to be scaled. The architectural style is intended to accord 
with contemporary approaches to mobility management 
systems – particularly in smart cities – where isolated log-
ic, distributed data, and a high degree of modularity are 
preferred. Z. Wang et al. (2025) emphasised such modular 
scaling in urban mobility platforms, while C.  Campos  et 
al. (2025) highlighted coordination of heterogeneous com-
pute stages via explicit flow specifications. Figure  4 pre-
sented the C4 container-level diagram of the system. The 
diagram is intended to present the overall architecture of 
the web-based traffic flow management system built on a 
microservice model. The system is described as consisting 
of several independent containers (microservices), each in-
tended to perform a clearly defined function. The user (an-
alyst, dispatcher, or operator) is expected to interact with 
the system via a React-based web interface. The web inter-
face is intended to send requests to an API Gateway, which 
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is intended to act as a router between the client and the in-
ternal microservices. All processed information is intended 
to be stored in a central database (PostgreSQL), while con-
figuration parameters – including change logs and tokens – 
are intended to be maintained in a separate configuration 
store (Redis or JSON-based storage). Beyond the structural 

architecture and user scenarios, an important aspect of 
conceptual modelling is intended to be the description of 
how data are transmitted and transformed within the sys-
tem. For this purpose, a DFD is planned to be employed 
to depict, in a clear and intuitive manner, the sources, 
processors, stores, and directions of information flow. 

Web-based transport monitoring system (system) 

User 
Analyst or dispatcher 

working with transportation 
 

Web-interface 
[React] 

Display of maps, graphs and analysis results 

Used 

HTTP 

API Gateway 
 [Node.js] 

Distributing requests to 
microservices 

Integration microservice 
[Node.js] 

Gets data from city APIs 

REST 

Settings microservice 
[Django Admin] 

Access control, settings 

Processing microservice 
[Python] 

Data aggregation 
and transformation

Configuration repository 
[Redis / JSON Store] 

Parameters, API keys 

Analytical microservice 
[Python] 

Performs analy
 
tics, 

forecasting

Database 
[PostgreSQL] 

Aggregated and historical data storage 

Visualisation microservice 
[Node.js] 

Generates data fo
 
r graphs and maps 

Transmits 
raw data 

Transmits 
aggregated data 

Records processed data 

Transmits 
analytical results 

Reads historical data Reads 
analytical 
data 

Ready/writes 
configurations 

REST 
REST 

REST REST 

Figure 4. C4 container-level diagram
Source: designed by the authors

Such diagrams were particularly valuable in transport 
information systems where large volumes of real-time 
streams require structured processing; this observation 
supports the choice to make data-flow boundaries ex-
plicit. B.P.  Rafamatanantsoa  et al.  (2024) showed, in the 
City2Twin context, that microservice-oriented architec-
tures facilitate the tracing and scaling of data flows across 
dynamic streams and static context; the DFD is intended 
to mirror this separation of concerns. The components 
captured by a DFD are intended to include: external data 
sources/receivers (users, APIs); processing processes (mi-
croservices); intermediate and final data stores (data-
base, cache); data flows between components. The DFD 
for the traffic flow management system is intended to be 
shown in Figure 5.  The data-flow diagram is intended to 
depict the key information transformations within the 
system. Data are expected to arrive from external sources 

(municipal APIs), to be processed by the integration and 
aggregation microservices, to be stored in the database, 
to be subjected to analytical processing, and ultimately 
to be presented to the user. All processes are intended 
to be configured via a dedicated configuration microser-
vice, which is expected to ensure flexibility, centralised 
parameter control, and efficient data movement. For the 
storage, processing, and subsequent analysis of trans-
port data, the web system is intended to employ a cen-
tralised relational database. Its structure is intended to 
be modelled using an ER diagram, which is intended to 
visualise the core entities, their attributes, and the rela-
tionships between them. S.  Batita  et al.  (2024) reported 
that relational, domain-oriented schemas remain effec-
tive in urban transport systems for scalability and ana-
lytical integration, while A.  Mansurova  et al.  (2025) de-
scribed schema designs that handle high-volume GPS 
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events under city workloads; these findings motivate the 
choice of a relational backbone with explicit keys and  

constraints. The list of database entities is intended to be 
presented in Table 2.

Settings microservice 
City  APIs 

JSON with coordinates, routes Update 
frequency 

Microservice integrations Filters and 
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Cleaned and 
normalised data 

Role parameters 

Processing microservice 

Generated files, log files 

Database 
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User 
Analytical microservice 

Prediction results, 
markets 

Requests for 
review 

Visualisation microservice 

Figure 5. Service DFD diagram
Source: designed by the authors

Figure 6 presented a visual representation of the data-
base in the form of an ER diagram. It is intended to outline 
the core entity sets (such as Routes, Vehicles, Stops, Move-
mentEvents, Indicators, Users/Roles, and Configurations) 
together with their primary-foreign key relationships and 
cardinalities. The diagram is expected to guide normal-
isation choices (for example, separating time-stamped 
movement events from relatively static vehicle or route 
metadata) and to make integrity constraints explicit for 
implementation. By fixing these invariants at the schema 
level, the model is positioned to support scalable ingestion, 
consistent historical queries, and reproducible analytics 
across different city deployments. The ER diagram is in-
tended to depict the structure of the database that is ex-
pected to store information on transport routes, vehicles, 
stops, traffic events, and analytical results. Each route is 
intended to be linked to a set of vehicles and stops; each 
vehicle is intended to be associated with movement events; 

and each analytical record is intended to be generated by a 
system user. This model is intended to encode relationships 
between real-world objects and to support rapid access to 
the required information. In summary, the overall architec-
ture is intended to provide a clear separation of concerns, 
where each microservice fulfils a narrowly scoped role and 
communicates through explicit, well-typed contracts. This 
decomposition is expected to simplify scaling and fault iso-
lation, while the API Gateway, shared schemas, and config-
uration store maintain coherence across the system. The 
C4, DFD, and ER artefacts together are meant to anchor im-
plementation and testing by fixing boundaries, data flows, 
and invariants before code. Operationally, the design aims 
to balance near-real-time updates with batch consolida-
tion, so that cities can tune latency, load, and cost to local 
needs. Collectively, these properties are intended to deliver 
a robust foundation for deployment, evolution, and repro-
ducible analysis in heterogeneous urban environments.

Entity Description

Routes Route number, mode of transport, origin and terminus stops.
Vehicles Identifier, type, associated route number, GPS coordinates.

Stops Stop name, coordinates, list of routes serving the stop.
Traffic events Timestamp, location, delay, vehicle ID, distance to the nearest stop.

Analytics/Forecast Model type, route ID, date, forecast output.
Users Name, role (analyst, administrator), access token.

Source: compiled by the authors

Table 2. Principal database entities



Technologies and Engineering, Vol. 26, No. 4, 2025 65

Roskladka & Postrelko

Figure 6. ER diagrams of the databases
Source: designed by the authors

Conclusions
The study has enabled the formulation of a coherent con-
ceptual model of a web-based system for managing urban 
traffic flows grounded in a microservice architecture. It 
was found that delineating the system’s functional zones 
at the microservice level ensures a clear separation of re-
sponsibilities and facilitates scaling without disrupting the 
overall data-processing logic. The analysis showed that the 
chosen sequence of modelling artefacts – an ER diagram for 
the domain, a multi-level DFD to trace information flows, 
and a C4 diagram to refine container boundaries and inter-
actions – is sufficient for the unambiguous reproduction of 
the proposed architecture by other researchers and devel-
opers. It was demonstrated that integrating these artefacts 
within a single methodological framework minimises am-
biguities in data interpretation and conflicts between com-
ponents, which is particularly important in urban scenarios 
characterised by heterogeneous data sources. 

It was found that the asynchronous interaction of the 
integration module with municipal application program-
ming interfaces ensures stable message intake and simpli-
fies the unification of data formats. The analysis showed 
that deploying a dedicated processing and aggregation 
module makes it possible to standardise core traffic met-
rics and prepare aligned temporal slices for subsequent 
interpretation. It was substantiated that the analytics 
module should be constructed as a superstructure over 
aggregated indicator sets, focusing on the computation 
of indicators and baseline forecasts, whereas the visualis-
ation microservice provides cartographic and time-series 
renderings of results for the prompt interpretation of sit-
uations across the urban space.

The proposed separation of processing into oper-
ational and periodic modes proved methodologically 
sound. It was established that the operational loop is 
appropriate for obtaining current indicators of load and 
deviations from the timetable, whereas the periodic loop 
serves to reconcile historical data and to construct aggre-
gate measures. It was demonstrated that unified metric 
definitions and deterministic calculation functions are 
critical to the reproducibility of results across diverse ur-
ban contexts and ensure consistency between visual rep-
resentations and the outputs of the analytics module. Fu-
ture research will focus on the stepwise validation of the 
model using real urban data, the deployment of a proto-
type connected to open application programming inter-
faces, the extension of the analytics module with methods 
for forecasting short-term delays and overloads, and the 
development of harmonised visualisation scenarios for 
different user categories, thereby enabling an assessment 
of the proposed architecture’s scalability and reproduci-
bility under practical conditions.

Acknowledgements
The authors express their gratitude to the State University 
of Trade and Economics, which provided comprehensive 
support for scientific research by university teachers and 
postgraduate students.

Funding
None.

Conflict of Interest
None.

Stop 
 id: int 
 name: string 
 coordinates: string 

passes

Route 
 id: int 

User number: string 
 id: int type: string 

 name: string 
 start: string 

 role: string finish: string 

 token: string 
analyses has 

creates 

Analysis Transport Motion event 

 id: int   id: int generates  id: int 

 id_route: int  type: string  time: datetime 

 date: date  number: string  delay: int 

 result: text  id_route: int  id_transport: int 

References
[1]	 Adrianto, H.A., Sitanggang, I.S., Akbar, A., Neyman, S.N., & Azhim, M.F. (2024). Interactive dashboard for visualization 

and analysis of landcover change and land/forest fire. IOP Conference Series: Earth and Environmental Science, 1418, 
article number 012082. doi: 10.1088/1755-1315/1418/1/012082.

https://doi.org/10.1088/1755-1315/1418/1/012082


Technologies and Engineering, Vol. 26, No. 4, 202566

Conceptual model of a web-based traffic flow management system...

[2]	 Barabash, O., Weigang, G., & Komar, K. (2021). Formation of traffic safety profile in central parts of the city and its 
informational protection. Transport Technologies, 2(2), 42-51. doi: 10.23939/tt2021.02.042.

[3]	 Batita, S., Makni, A., & Amous, I. (2024). Intelligent transportation systems: A survey on data engineering. In DATA 
2024 proceedings of the 13th international conference on data science, technology and applications (pp. 169-179). Setúbal: 
SCITEPRESS – Science and Technology Publications. doi: 10.5220/0012857300003756.

[4]	 Beeraka, B.S. (2025). Enterprise microservices: Revolutionizing telecom network architecture. International Journal 
of Scientific Research in Computer Science, Engineering and Information Technology, 11(1), 290-297. doi:  10.32628/
cseit25111231. 

[5]	 Bokolo, А. (2025). Enabling seamless interoperability of digital systems in smart cities using API: A systematic 
literature review. Journal of Urban Technology, 31(4-5), 123-156. doi: 10.1080/10630732.2024.2427543. 

[6]	 Campos, C., Asenjo, R., & Navarro, Á. (2025). Exploring data flow design and vectorization with oneAPI for 
streaming applications on CPU+GPU. The Journal of Supercomputing, 81, article number 428. doi: 10.1007/s11227-
024-06891-3.

[7]	 Cao, Y., Li, Q.-J., & Yang, Z. (2025). Identifying the spatial range of the Pearl River Delta urban agglomeration  
from a differentiated perspective of population distribution and population mobility. Applied Sciences, 15(2), article 
number 945. doi: 10.3390/app15020945.

[8]	 Danyliuk, A., & Muliarevych, O. (2024). Ant colony algorithm in traffic flow control. Advances in Cyber-Physical 
Systems, 9(2), 158-163. doi: 10.23939/acps2024.02.158.

[9]	 Erişkin, E. (2024). Collaborative game-theoretic optimization of public transport fare policies: A global framework  
for sustainable urban mobility. Sustainability, 16(24), article number 11199. doi: 10.3390/su162411199.

[10]	 Fornalchyk, Y., & Hilevych, V. (2023). Characteristics of motorization’s impact on the urban population. Transport 
Technologies, 4(2), 68-75. doi: 10.23939/tt2023.02.068.

[11]	 Horokhovskyi, O., & Oshovska, K. (2015). Quality management and obtaining optimal results in the city’s transport 
network management system. Information Technologies and Computer Engineering, 12(3), 29-32.

[12]	 Inamdar, S.A., & Kulkarni, S.S. (2025). Advancing traffic volume prediction and synthetic data generation  
with machine learning and deep learning. International Journal for Multidisciplinary Research, 7(1), 1-18. doi: 10.36948/
ijfmr.2025.v07i01.35530. 

[13]	 Kotenko, M., Moskalyk, D., Kovach, V., & Osadchyi, V. (2024). Navigating the challenges and best practices in securing 
microservices architecture. In CPITS-II 2024: Workshop on cybersecurity providing in information and telecommunication 
systems II (pp. 1-16). Kyiv: Borys Grinchenko Kyiv Metropolitan University. 

[14]	 Kozachenko, D.M., Klyga, O.V., & Kharchenko, Ye.V. (2025). Modeling of train sets in tasks of railway stations technical 
and operational evaluation. Science and Transport Progress, 2(110), 88-97. doi: 10.15802/stp2025/331674.

[15]	 Laituri, M., Kalra, Y., & Yang, C. (2025). The disappearance of COVID-19 data dashboards: The case of ephemeral data. 
COVID, 5(1), article number 12. doi: 10.3390/covid5010012.

[16]	 Leghemo, I.M., Segun-Falade, O.D., Odionu, C.S., & Azubuike, C. (2025). Continuous data quality improvement 
in enterprise data governance: A model for best practices and implementation. Journal of Engineering Research  
and Reports, 27(2), 29-45. doi: 10.9734/jerr/2025/v27i21391. 

[17]	 Mansurova, A., Mussina, A., Aubakirov, S., Nugumanova, A., & Yedilkhan, D. (2025). From raw GPS to GTFS:  
A real-world open dataset for bus travel time prediction. Data, 10(8), article number 119. doi: 10.3390/data10080119.

[18]	 Matseliukh, Y., & Lytvyn, V. (2024). Modeling of passenger flows analysis system of low-carbon transportation  
in a smart city. Information Systems and Networks, 15, 430-448. doi: 10.23939/sisn2024.15.430.

[19]	 Ntouros, K., Papatheodorou, K., Gkologkinas, G.,  & Drimzakas-Papadopoulos, V. (2025). A Python framework  
for crop yield estimation using Sentinel-2 satellite data. Earth, 6(1), article number 15. doi: 10.3390/earth6010015. 

[20]	 Ohonovskyi, Y., Berko, A., Chyrun, L., & Chyrun, S. (2023). Information system prototype for monitoring and content 
analysis of complaints from smart city residents. Information Systems and Networks, 13, 24-45. doi:  10.23939/
sisn2023.13.024.

[21]	 Oyenuga, A.O., Apeh, C.E., Odionu, C.S., & Austin-Gabriel, B. (2025). Advancing public safety and housing solutions: 
A comprehensive framework for machine learning and predictive analytics in urban policy optimization. International 
Journal of Frontiers in Science and Technology Research, 8(1), 24-43. doi: 10.53294/ijfstr.2025.8.1.0024. 

[22]	 Power BI Community. (2021). Power BI challenge 12 wrap up: Transport & shipping data. Microsoft Power BI 
Community Blog. Retrieved from https://community.powerbi.com/t5/Community-Blog/Power-BI-Challenge-12-
Wrap-Up-Transport-amp-Shipping-Data/ba-p/1788343.

[23]	 Puzio, E., Drozdz, W., & Kolon, M. (2025). The role of intelligent transport systems and smart technologies in urban 
traffic management in Polish smart cities. Energies, 18(10), article number 2580. doi: 10.3390/en18102580.

[24]	 Quesado Filho, N.O., Guimarães, C.G.C., & Oliveira-Neto, F.M. (2025). Gtfswizard: A set of tools for exploring  
and manipulating general transit feed specification in R language. Contribuciones a Las Ciencias Sociales, 18(1), article 
number e14620. doi: 10.55905/revconv.18n.1-197.

https://doi.org/10.23939/tt2021.02.042
https://www.scitepress.org/Papers/2024/128573/128573.pdf
https://scispace.com/papers/enterprise-microservices-revolutionizing-telecom-network-20ooov16taxo
https://scispace.com/papers/enterprise-microservices-revolutionizing-telecom-network-20ooov16taxo
https://www.tandfonline.com/doi/full/10.1080/10630732.2024.2427543
https://doi.org/10.1007/s11227-024-06891-3
https://doi.org/10.1007/s11227-024-06891-3
https://doi.org/10.3390/app15020945
https://doi.org/10.23939/acps2024.02.158
https://doi.org/10.3390/su162411199
https://doi.org/10.23939/tt2023.02.068
https://itce.vn.ua/uk/journals/t-34-3-2015/upravlinnya-yakistyu-ta-otrimannya-optimalnogo-rezultatu-v-sistemi-keruvannya-transportnoyu-merezheyu-mista
https://itce.vn.ua/uk/journals/t-34-3-2015/upravlinnya-yakistyu-ta-otrimannya-optimalnogo-rezultatu-v-sistemi-keruvannya-transportnoyu-merezheyu-mista
doi: 10.36948/ijfmr.2025.v07i01.35530
doi: 10.36948/ijfmr.2025.v07i01.35530
https://elibrary.kubg.edu.ua/id/eprint/50580/
https://elibrary.kubg.edu.ua/id/eprint/50580/
https://doi.org/10.15802/stp2025/331674
https://doi.org/10.3390/covid5010012
https://journaljerr.com/index.php/JERR/article/view/1391
https://doi.org/10.3390/data10080119
https://doi.org/10.23939/sisn2024.15.430
https://doi.org/10.3390/earth6010015
https://doi.org/10.23939/sisn2023.13.024
https://doi.org/10.23939/sisn2023.13.024
https://doi.org/10.53294/ijfstr.2025.8.1.0024
https://community.powerbi.com/t5/Community-Blog/Power-BI-Challenge-12-Wrap-Up-Transport-amp-Shipping-Data/ba-p/1788343
https://community.powerbi.com/t5/Community-Blog/Power-BI-Challenge-12-Wrap-Up-Transport-amp-Shipping-Data/ba-p/1788343
https://doi.org/10.3390/en18102580
https://doi.org/10.55905/revconv.18n.1-197


Technologies and Engineering, Vol. 26, No. 4, 2025 67

Roskladka & Postrelko

[25]	 Rafamatanantsoa, B.P., Jeddoub, I., Yarroudh, A., Hajji, R., & Billen, R. (2024). City2Twin: An open urban digital twin 
from data integration to visualization and analysis. The International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, 48(2), 387-394 doi: 10.5194/isprs-archives-xlviii-2-w8-2024-387-2024.

[26]	 Şahin, G., Avcı, D.A., Karagenç, Ş., Pak, B.K., Seke, P., & Tunalı, A.Ç. (2024). Enhancing user experience in insurance 
applications: Adopting microservices architecture and innovative methods. Orclever Proceedings of Research  
and Development, 5(1), 274-284. doi: 10.56038/oprd.v5i1.548. 

[27]	 Schetakis, N., Bonfini, P., Alisoltani, N., Blazakis, K., Tsintzos, S.I., Askitopoulos, A., Aghamalyan, D., Fafoutellis, P., & 
Vlahogianni, E.I. (2025). Data re-uploading in Quantum Machine Learning for time series: Application to traffic 
forecasting. arXiv. doi: 10.48550/arXiv.2501.12776.

[28]	 Volkov, D., & Liubchenko, V. (2024). Securing microservices: Challenges and best practices. In ICST-2024 information 
control systems & technologies. Odesa: Odesa Polytechnic National University. 

[29]	 Wang, Z., Yu, D., Zheng, X., Meng, F., & Wu, X. (2025). A model-data dual-driven approach for predicting shared bike 
flow near metro stations. Sustainability, 17(3), article number 1032. doi: 10.3390/su17031032.

[30]	 Wibowo, A., Ruslanjari, D., Surahmat, A., Karyaningsih, D., & Vera, N. (2024). The MxT model: Leveraging social 
media data for real-time route optimization in disaster-prone urban transport networks. International Journal  
of Transport Development and Integration, 8(4), 587-594. doi: 10.18280/ijtdi.080410.

[31]	 Yang, F. (2025). Leveraging mobile interaction technologies for real-time decision making in enterprise management 
systems. International Journal of Interactive Mobile Technologies, 19(2), 65-78. doi: 10.3991/ijim.v19i02.53743.

[32]	 Yu, Y., Wang, Y., Zhang, Y., Qu, H., & Liu, D. (2025). InclusiViz: Visual analytics of human mobility data  
for understanding and mitigating urban segregation. arXiv. doi: 10.48550/arXiv.2501.03594.

Концептуальна модель веб-системи управління  
транспортними потоками у міському середовищі  
на основі мікросервісної архітектури

Андрій Роскладка
Доктор економічних наук, професор
Державний торговельно-економічний університет
02156, вул. Кіото, 19, м. Київ, Україна
https://orcid.org/0000-0002-1297-377X
Євгеній Пострелко
Aспірант 
Державний торговельно-економічний університет
02156, вул. Кіото, 19, м. Київ, Україна
https://orcid.org/0000-0001-9730-450X

Анотація. Актуальність дослідження зумовлена зростанням навантаження на міську транспортну 
інфраструктуру, потребою у цифровій трансформації управління мобільністю та впровадженні інтелектуальних 
технологій аналізу даних у режимі реального часу. Така система дає змогу оперативно реагувати на зміни у русі 
транспорту, підвищувати ефективність маршрутної мережі та покращувати якість міських перевезень. Метою 
дослідження було формування архітектури веб-системи, яка забезпечує інтеграцію даних із міських інтерфейсів 
прикладного програмування, їх автоматизовану обробку, аналітичну інтерпретацію, візуалізацію результатів 
та централізоване керування конфігураціями. Методологічну основу становили підходи системного аналізу, 
моделювання потоків даних, побудова діаграм «сутність-звʼязок» та застосування архітектурних шаблонів 
для відображення структурної та функціональної взаємодії компонентів. У статті розроблено концептуальну 
модель веб-системи управління транспортними потоками у міському середовищі, побудовану за принципами 
мікросервісної архітектури. Результатом роботи було створення структурної моделі системи, що включила п’ять 
взаємопов’язаних мікросервісів: інтеграції з міськими інтерфейсами прикладного програмування (Node.js), 
обробки та агрегації даних (Python, Redis Streams), аналітичного модуля з підтримкою алгоритмів машинного 
навчання (Scikit-learn), модуля візуалізації (React, Mapbox, Chart.js) та сервісу керування доступом і конфігураціями. 
Детально описано логіку їхньої взаємодії, механізми масштабування та забезпечення відмовостійкості. 
Практична цінність дослідження полягала у розробленні універсальної архітектонічної основи для впровадження 
систем аналітики й моніторингу міського транспорту, що можуть стати прототипом інтелектуальних платформ 
управління мобільністю в концепції Smart City

Ключові слова: розподілені інформаційні сервіси; цифрове моделювання міської мобільності; аналіз потоків 
даних у реальному часі; веб-аналітика транспортних систем; візуалізація просторово-часових даних; Smart City
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