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Abstract. The relevance of the research arises from the growing load on urban transport infrastructure, the need
for digital transformation of mobility management, and the implementation of intelligent data analytics technologies
operating in real time. Such a system enables prompt responses to changes in traffic conditions, improves the efficiency
of the route network, and enhances the overall quality of urban transportation services. The purpose of the study was
to design the architecture of a web system that ensures the integration of data from city application programming
interfaces, their automated processing, analytical interpretation, visualisation of results, and centralised configuration
management. The methodological basis of the research included approaches of systems analysis, data flow modelling,
the construction of entity-relationship diagrams, and the use of architectural design patterns to represent the structural
and functional interaction of components. The article presented the development of a conceptual model of a web-
based system for managing traffic flows in an urban environment, designed according to the principles of microservice
architecture. The research outcome was the creation of a structural model of the system comprising five interrelated
microservices: integration with city application programming interfaces (Node.js), data processing and aggregation
(Python, Redis Streams), an analytical module with machine learning algorithms (Scikit-learn), a visualisation module
(React, Mapbox, Chart.js), and a service for access control and configuration management. The paper provided a detailed
description of their interaction logic, scaling mechanisms, and reliability assurance. The practical value of the study lied
in the development of a universal architectural framework for implementing systems of analytics and monitoring of urban
transport, which may serve as a prototype for intelligent mobility management platforms within the Smart City concept

Keywords: distributed information services; digital modelling of urban mobility; real-time data flow analysis; web
analytics of transport systems; spatio-temporal data visualisation; Smart City

Introduction

Rapid urbanisation and the saturation of transport infra-
structure require cities to adopt flexible digital solutions
capable of handling large-scale data streams in near real
time. Traditional monolithic approaches do not provide
the necessary scalability, fault tolerance, or speed of de-
ployment. By contrast, a microservice architecture, com-
bined with web technologies and contemporary analytics,
enables the development of manageable, transparent, and

reproducible systems for traffic flow management at the
urban scale. In this context, articulating a concept that
links data acquisition, processing, analytics, and presenta-
tion within a coherent architectural frame becomes essen-
tial for reproducibility and future scaling.

Ukrainian and international scholars are actively ad-
vancing research on web architecture, microservices, traf-
fic flow management, visual analytics, and the Smart City
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paradigm. Ukrainian researchers M. Kotenko et al. (2024)
have systematised security practices for microservice ar-
chitecture - including service mesh, mutual Transport Lay-
er Security, Zero Trust, and Development, Security, and Op-
erations — demonstrating their practical value for building
secure, distributed web systems. Their work emphasised
layered defences (isolation, Application Programming In-
terface (API) gateways, policy-based access) and showed
how service mesh patterns reduce the attack surface and
centralise traffic governance in distributed environments,
which is crucial for city-scale web platforms handling
personal mobility data. D. Volkov & V. Liubchenko (2024)
provided a review of threats and protection strategies for
microservices and identified gaps in their application;
their study underscored the importance of comprehen-
sive risk-management approaches within microservice
architecture and established a methodological foundation
for the secure integration of urban transport services. In
particular, they highlighted the absence of universal threat
models for microservices and advocate STRIDE-oriented
(Spoofing, Tampering, Repudiation, Information disclo-
sure, Denial of service, Elevation of privilege) analysed
coupled with container hardening and secure inter-service
communication, aligning well with transport systems that
must assure integrity and availability during peak loads
or incidents. Y. Matseliukh & V. Lytvyn (2024) proposed a
model for analysing passenger flows in low-carbon trans-
port within a Smart City, and outlined a sequence of data
sources and open datasets that are particularly useful for
urban transport visualisations. Their correlation-regres-
sion analysis connected passenger throughput with CO,
emissions, motivating analytics modules that not only
forecast flows but also assess ecological impact; this di-
rectly informs key performance indicators sets for dash-
boards in a traffic management web system (e.g., trip time,
occupancy, emission proxies). Y. Ohonovskyi et al. (2023)
presented a prototype of an information system for moni-
toring and content analysis of citizens’ appeals in a Smart
City context, with an emphasis on web-oriented integra-
tion of municipal services. The proposed ideas proved
suitable for composing a web platform for flow manage-
ment with modular integration of urban data. This citi-
zen-feedback channel complements sensor data: incident
reports, complaints, and requests create additional signals
for congestion detection and service prioritisation, which
a microservice platform can ingest via dedicated ingestion
and natural language processing services. A. Danyliuk &
O. Muliarevych (2024) examined approaches to traffic con-
trol, including Cyber-Physical Systems/Internet of Things
(CPS/I0T) solutions and elements of artificial intelligence;
these approaches helped to establish the algorithmic con-
text for the analytical microservice of the web system.
Their surveys of adaptive signal control and parameter sets
(speed, density, volume) provided a catalogue of measur-
able features that can be operationalised in forecasting
pipelines, while the CPS perspective clarifies integra-
tion patterns with roadside devices through secure APIs.

Building on systems analysis, O. Barabash et al. (2021)
decomposed the urban transport system, developed a
road-safety profile, and outlined criteria for flow efficiency,
while separately highlighting the role of, and risks posed
by, telecommunication threats. Their “traffic safety profile”
concept suggested a morphology of factors (network de-
sign, intersection typology, pedestrian streams) that can be
encoded as domain ontologies and used for rule-based di-
agnostics in tandem with predictive models. Y. Fornalchyk
& V. Hilevych (2023) demonstrated that increasing motor-
isation correlates with higher accident rates, noise, and
emissions, and substantiated a transition towards an arti-
ficial-intelligence-enabled transport network with central-
ised monitoring as a viable direction for mitigation. This
evidence strengthened the case for city-wide coordination
layers in the architecture (control plane plus monitoring
plane) to mitigate externalities of motorisation through
proactive forecasting and targeted control policies.

Y. Yu et al. (2025) systematised visual analytics tech-
niques for heterogeneous mobility data, highlighting,among
the principal visual objects, origin-destination maps, a
range of progressive analytics methods, and inclusive inter-
face designs. Their InclusiViz system combined deep models
(Deep Gravity-style) with explainable analytics and what-if
tooling, indicating how a traffic platform may evolve from
descriptive dashboards to prescriptive, simulation-backed
decision support with multi-level views (city-wide to neigh-
bourhood). A. Wibowo et al. (2024) proposed the MxT mod-
el, which integrates streams from the X social network to
detect obstructions and enable rapid route adjustments;
their results reported over 91.6% detection accuracy and
approximately a 15% reduction in travel time. This illus-
trated a viable “social sensing” microservice that enrich-
es sensor feeds during disruptions (floods, protests), with
grounding via ground-truth validation — an approach trans-
ferrable to European cities with similar incident typologies.

Building on the outlined problematisation, the study
aimed to propose a coherent conceptual model of a web-
based traffic flow management system for the urban en-
vironment, grounded in microservice architecture, which
aligns data acquisition and integration with their analyt-
ical interpretation, visualisation, and the administrative
management of configurations.

Materials and Methods

This article presented an original conceptual model de-
veloped within a design-science approach. The research
methodology comprised several consecutive stages. Based
on a review of publications and practical cases in urban
mobility management, the functional zones of the sys-
tem were identified: data acquisition and integration, data
processing and aggregation, analytics, visualisation, and
access and configuration. These zones were then used as
criteria for the architectural design. The system was de-
composed into five microservices that correspond to these
zones, and their structure and interactions are described in
the sections devoted to individual microservices. For each
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functional zone, a set of entity-relationship (ER), data-flow
diagrams (DFD) and context-container-component-code
(C4) diagrams was prepared to capture the domain struc-
ture, information flows and boundaries of microservice re-
sponsibility. The final stage was a qualitative comparison
of candidate analytical tool stacks (Python, R, Excel/Power
BI) using criteria such as performance, scalability and suit-
ability for integration into a microservice architecture.

The conceptual model was developed as a sequential
architectural design process with the key artefacts explicit-
ly documented. The architectural solution followed a “con-
text — containers » components” approach. Microservices
were distinguished for integration with municipal APIs
(data ingestion and dissemination), data processing and
aggregation (validation, normalisation, and consolidation
of indicators), analytics (calculation of indicators and sup-
port for forecasting algorithms), visualisation (maps and
charts for presenting results), and access and configuration
management (centralised settings and access rights). For
each microservice, public interfaces and message exchang-
es were specified to ensure independent evolution of com-
ponents and their scalability.

In constructing the conceptual model, the focus was
on defining data schemas, interfaces and information
flows at the architectural level. No concrete test datasets
or quantitative experiments with real or synthetic records
were designed within this study. In the conceptual model, a
separate functional zone is formed by the results visualis-
ation layer, which is responsible for presenting aggregated
and analytical data in a clear form for different groups of
users. To provide a coherent representation of the struc-
ture and information flows, a domain ER diagram was
created (routes, stops, vehicles, traffic events, indicators/
forecasts, users/roles, configurations), as well as DFD for
levels 0-2 (the main channels of data ingestion, processing,
and delivery) and a C4 diagram that shows microservice
responsibility boundaries and their interactions. Together
with interface specifications and data format descriptions,
these diagrams enable other researchers to reproduce the
proposed model under comparable conditions. The repro-
ducibility of the solution was supported by documenting
interface schemas, canonical definitions of indicators, and
typical configurations, so that equivalent deployments
can be implemented in different urban contexts without
changing the underlying architectural principles.

Results and Discussion

Municipal API integration microservice. The system
comprises distinct microservices, each responsible for a
specific set of functions: integration with municipal APIs,
data processing and aggregation, analytical computation,
results visualisation, and configuration management. The
municipal API integration microservice is intended to in-
gest, process, and preliminarily validate data on intra-ur-
ban traffic flows. Its primary task is envisaged to be the
establishment of stable communication with external ser-
vices that are expected to provide up-to-date information

on public transport movements, routes, timetables, and
potential delays. In the conceptual model, the microservice
is designed to perform regular or event-driven requests to
designated APIs, as discussed by A. Bokolo (2025), who em-
phasised the role of RESTful integration patterns for Smart
City data exchange, ensuring the processing of received
data and their transformation into an internal format suit-
able for further analytical interpretation.

Introducing a dedicated microservice for API integra-
tion is meant to enable high flexibility when data sources
or response formats change, while minimising the impact
on other components of the web system. Moreover, isolat-
ing data acquisition into an independent service is intend-
ed to enhance the solution’s scalability and to simplify its
maintenance; G. Sahin et al. (2024) outlined similar bene-
fits of decoupled ingestion layers for maintainability and
scale in municipal web systems.

In implementing the project, it is assumed that the
developers will have access to open APIs of municipal
transport services that provide the necessary information
in a specified format. In particular, it is envisaged that the
APIs support standard HTTP (HyperText Transfer Proto-
col) requests (GET method) and return responses in JSON
(JavaScript Object Notation) containing the following key
attributes: a unique vehicle identifier; geographic coordi-
nates (latitude, longitude); current speed; route identifier;
scheduled arrival time at the next stop; actual timestamp of
the latest update. The Municipal API Integration microser-
vice is positioned to play a critical role in ensuring reliable
acquisition of traffic-flow data for subsequent analysis. Its
principal functional components are proposed to include:

1) Initiation of requests to open municipal APIs. The
microservice is expected to periodically issue HTTP re-
quests (predominantly via the GET method) to designat-
ed municipal API endpoints to retrieve vehicle locations,
routes, and timetables. A standardised REST architecture
is intended to underpin this integration, consistent with
contemporary Smart City practice; A. Bokolo (2025) under-
scored that consistent REST conventions improve interop-
erability and reduce coupling across civic data services.

2) Validation and verification of received data. Re-
sponses are to be checked against the expected structure,
including the presence of mandatory fields (vehicle identi-
fier, coordinates, speed, update time). In the event of mal-
formed or incomplete records, the microservice is expected
to filter them out to maintain a high level of information
quality; I.M. Leghemo et al. (2025) drew attention to sys-
tematic quality gates for API-delivered mobility streams.

3) Transformation into an internal unified format. To
ensure interoperability, data obtained from heterogeneous
APIs are intended to be normalised to a predefined schema.
This is meant to prevent errors during subsequent process-
ing and visualisation.

4) Error handling and resilience. When an external API
is unavailable or returns an invalid response, the micros-
ervice applies retry mechanisms with exponential backoff
and emits error notifications for downstream auditing.
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5) Real-time or scheduled data refresh. The microser-
vice is designed to support both event-driven processing
(e.g., upon receipt of an update signal) and periodic data
collection at a configured interval, which is expected to en-
able optimisation of system load.

Thus, the integration microservice is expected to en-
sure reliable ingestion, validation, and preparation of
transport data for subsequent analytical and visualisation
processes within the web-based traffic flow analysis sys-
tem. Implementing the municipal API integration mi-
croservice is assumed to require technologies capable of
sustaining high throughput under large volumes of con-
current requests, offering flexibility in API handling, and
ensuring robust data processing. Following a comparison
of several technology stacks, the development would adopt
Node.js with the Axios library for issuing HTTP requests.
This choice is justified by Node.js’s efficiency in handling
asynchronous calls through its non-blocking I/O0 mod-
el, as highlighted by B.S. Beeraka (2025), who associated
event-driven runtimes with high-frequency HTTP work-
loads in urban analytics, which is considered critical for
tasks characterised by high-frequency data exchange.

The chosen Node.js technology is expected to enable
the microservice requirements to be met effectively in
terms of request processing speed, ease of API integra-
tion, and scalability under increasing load. A conceptual
container diagram (Fig. 1) is intended to illustrate the ar-
chitecture of the municipal API integration microservice
implemented in the proposed stack. In this diagram, the
microservice establishes connections to external APIs,
handles requests, transforms data into the internal format,
validates the retrieved information, and persists it for sub-
sequent processing within the traffic flow analysis system.

City API integration service

API-client Request

Request library

Data
transform

Validation

Figure 1. Container diagram
of the Municipal API Integration microservice
Source: designed by the authors

In summary, the municipal API integration micros-
ervice is intended to provide a stable, configurable entry
point for mobility data, decoupling external API variability
from the system’s internal contracts. Its design is expected
to prioritise ingest throughput, schema normalisation, and
explicit error-handling paths so that downstream services

receive consistent, high-quality records. Operationally,
the service is envisaged to support both scheduled and
event-driven refresh modes, enabling cities to balance la-
tency against load. By isolating acquisition concerns and
exposing a narrow, well-typed interface, the microservice
is intended to simplify maintenance, support independent
scaling, and reduce the blast radius of upstream changes.
Collectively, these properties are expected to improve re-
liability and to create a robust foundation for subsequent
aggregation, analytics, and visualisation.

Data processing and aggregation microservice. The
data processing and aggregation microservice is a key com-
ponent that is intended to perform the initial processing of
data received from the Municipal API Integration micros-
ervice. E. Puzio et al. (2025) described analogous staging
of pre-analytics pipelines for transport feeds, which moti-
vates the separation of ingestion and cleaning as a distinct
service layer. Its primary purpose is to render the data into
a structured form suitable for subsequent analysis, storage,
and visualisation. This is envisaged to be achieved by filter-
ing out malformed or incomplete records, normalising val-
ue formats (e.g., time and coordinates), consolidating data
by routes, vehicles, or time intervals, and computing basic
aggregates (such as average speed and mean delay). Thus,
the microservice is positioned to serve as a buffer between
raw, unprocessed data and the analytics modules, provid-
ing a reliable, high-quality foundation for all subsequent
computations within the system.

Within this microservice, it is assumed that the input
arrives as structured JSON objects from the preceding inte-
gration microservice and contains the following attributes:
a unique vehicle identifier; a route identifier; the data cap-
ture time in Coordinated Universal Time (UTC); location
coordinates; current speed; delay, in minutes, relative to
the timetable. Based on the input data, aggregation is in-
tended to be performed by routes; by time intervals; by ge-
ographical zones. As a result, analytical slices are expected
to be produced that include, inter alia: average speed on a
route over the selected period; frequency of stops or delays;
number of active vehicles at a given moment. After aggre-
gation, the data are to be stored in a standardised internal
format (e.g., as JSON objects or database tables), facilitat-
ing seamless integration with subsequent system modules
(analytics and visualisation). The Power BI Communi-
ty (2021) outlined practical constraints of spreadsheet-cen-
tric pipelines for streaming data, and N.O. Quesado Filho et
al. (2025) contrasted dashboard tooling with code-first
stacks, which together support the decision to separate
Extract-Transform-Load (ETL)-like routines from end-user
visualisation layers. A comparison of these options accord-
ing to the criteria of performance, flexibility, scalability and
support for machine learning tools is provided in Table 1.

Table 1. Comparison of analytical tools for implementing a web system

Criterion

Python

R Excel / Power BI

Computing performance High (vectorisation, NumPy)

Average, good for statistics | Low, not suitable for large volumes

Libraries for machine learning/Al | Scikit-learn, XGBoost, Prophet

Caret, GTFSwizard, Forecast Minimum (statistics only)

Technologies and Engineering, Vol. 26, No. 4, 2025
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Table 1. Continued

Criterion

Python

R Excel / Power BI

Working with spatial data GeoPandas, Folium

SF, Leaflet, GTFSwizard Only through external plugins

Integration into

. . High (FastAPI, Flask, Celery)
a microservice system

Limited, harder to scale Not intended for server systems

Learning curve Moderate

Moderate Low

Open code Yes

Yes Partially (closed formulas)

Source: compiled by the authors

Although R is noted to have a few quality libraries
for analysing GTFS transport data (e.g., GTFSwizard), its
weaker representation in microservices and web integra-
tion ecosystems is assumed to limit its use for real-world
deployment of transport analytics. Using Excel/Power BI
is considered justified in cases of visual data analysis for
non-specialists, however, this approach does not scale, of-
fers limited automation, and does not support the flexible
application of machine learning algorithms. Python is con-
sidered to have an advantage in all key aspects: computa-
tional speed, support for machine learning libraries; inte-
gration with infrastructure components (FastAPI, Celery);
flexibility of spatial analysis (GeoPandas, Shapely).

For implementing the data processing and aggregation
microservice, the Python language was selected conceptu-
ally, as its libraries are intended to provide high efficiency
when working with data arrays - specifically, pandas for
tabular processing, NumPy for numerical operations, and
datetime for time-interval manipulation. Python is chosen
for its optimal balance between syntactic simplicity, a broad
toolkit for data analysis, and straightforward integration
with streaming solutions (e.g., Redis Streams or Apache
Kafka). Compared with other languages (such as Java or
Scala), Python is considered more suitable for prototyping
and for flexible handling of semi-structured data, which
are typical of transport analytics. K.Ntouros et al. (2025)
emphasised the practical advantages of Python-centric
data engineering for municipal platforms, a consideration
reflected in the prioritisation of a lightweight but extensi-
ble stack. As the data-streaming system, Redis Streams is
considered due to its lightweight nature, rapid deployment,

Data processing and aggregation microservice

and minimal configuration requirements. This is particu-
larly advantageous in urban settings, where the system is
expected to operate with reduced latencies and respond
swiftly to incoming records. F. Yang (2025) highlighted the
utility of stream abstractions that combine event buffering
with time-windowed aggregation, a capability mirrored by
Redis Streams for transport-data grouping.

The data processing and aggregation microservice is
positioned to play a critical role in transforming raw in-
formation on traffic flows into aggregated, clean, and
structured data that can be used directly for subsequent
analysis and visualisation. Its architecture is intended to
enable the efficient detection of anomalous values, the
grouping of data by routes, vehicles, or time intervals, and
the construction of core metrics — average speed, delays,
and the number of active vehicles. Taken together, these
design choices are expected to provide an optimal balance
between performance, implementation simplicity, and ad-
aptability to data volumes, thereby delivering a scalable
foundation for further integration with the system’s ana-
lytics and visualisation modules (Horokhovskyi & Oshovs-
ka 2015). The diagram (Fig. 2) was intended to depict the
principal stages of transport data processing within the mi-
croservice implemented in Python, using Redis Streams as
the streaming mechanism. Input data are assumed to enter
Redis Streams, where they are buffered and forwarded to
the processor. The workflow is expected to perform filter-
ing, normalisation, and aggregation, followed by grouping
by routes, time intervals, or geozones. The aggregated re-
sults are to be stored in the internal repository (Redis JSON)
and prepared for subsequent use by other system modules.

By routes

G Results

Processing Python

\A
L]

intervals

Raw data Hedlls

Streams“Redis”

Filtration ]4»{Normalisation }» Ef\ggregation
~

By geofences

Aggregated data|
storage

Figure 2. Microservice architecture for data processing and aggregation

Source: designed by the authors

In summary, the data processing and aggregation
microservice is intended to act as the system’s stabilis-
ing layer, converting heterogeneous, event-level inputs
into consistent, analysis-ready datasets. Its workflow

prioritises deterministic cleaning rules, schema normal-
isation, and configurable aggregation windows so that
downstream modules receive comparable indicators
across routes, times, and zones. By separating operational
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(near-real-time) and periodic (batch) modes, the service
is expected to balance latency with completeness and to
prevent contention under peak loads. The explicit gener-
ation of core metrics — such as average speed, delay dis-
tributions, and active-vehicle counts - provides a minimal
yet sufficient feature set for forecasting and visualisation.
Collectively, these properties are intended to reduce er-
ror propagation, simplify debugging, and create a scalable
foundation for the analytical and presentation layers.

Analytics microservice for urban transport analyt-
ics and forecasting. The analytics microservice is a key
component of the web-based traffic flow analysis system,
as it is intended to enable the transition from aggregated
data to practically meaningful insights. This component is
designed to process cleaned and structured data to identi-
fy patterns, forecast problematic segments, and formulate
hypotheses for improving the city’s route network. In con-
trast to the Data Processing and Aggregation microservice,
the analytics module is oriented not only toward handling
current values but also toward generating conclusions that
may have strategic significance for urban mobility plan-
ning. The analytics microservice is assumed to perform in-
telligent processing of aggregated transport data to detect
anomalies, derive performance indicators, and generate
forecasts of load across the city’s route network. It oper-
ates conceptually on data prepared by the preceding micro-
services, which are expected to supply cleaned, structured
time-series information on vehicle movements.

The microservice is designed to perform in-depth an-
alytics of transport data, specifically: detecting conges-
tion and zones of heightened traffic intensity; analysing
deviations from timetables and delays in public transport;
computing route efficiency metrics (e.g., load factor, aver-
age travel time); producing baseline forecasts of delays or
route load for specified periods; generating a set of rec-
ommendations (hypotheses) for the optimisation of the
transport network. Thus, the analytics microservice is in-
tended to provide the intelligent data processing required
for well-founded managerial decisions in urban transport.
Within the analytics microservice, it is assumed that the
inputs are the aggregated and normalised datasets pro-
duced by the preceding Processing and Aggregation mi-
croservice. These data are expected to be error-cleaned,
structured by key parameters, and ready for analytical in-
terpretation. A basic input structure may be represented as
a table or as JSON objects with the following records: route
identifier; time interval; average speed on the route for the
corresponding interval; average deviation from the time-
table; number of vehicles on the route; route load factor;
territorial zone or city sector. All records are to be gener-
ated with a uniform temporal step, which is intended to
enable the construction of time series, the application of
cluster or correlation analysis, and the assessment of indi-
cator dynamics over time.

One of the module’s principal functions is envis-
aged to be the detection zones of heightened traffic
load - that is, segments characterised by persistently low

average speeds combined with a high number of vehicles.
To this end, filters are intended to be applied to identi-
fy critical speed thresholds, or cluster analysis is to be
employed to delineate typical traffic situations across
the city. A.O. Oyenuga et al. (2025) described comparable
urban-mobility analyses that translate such clusterings
into resource-allocation signals for city operations, which
informs the choice to keep the feature space compatible
with route-level interventions. Another function of the
microservice is proposed to be the analysis of deviations
from public transport timetables. For this purpose, the mi-
croservice is expected to compare the actual and sched-
uled times at stops. The results are intended to enable an
assessment of delay levels by day of the week and by time
interval, to identify peak periods of instability, and to lo-
calise zones where timetable violations are systematic.
Where additional data become available, such as weather
or event calendars, these factors are intended to be incor-
porated as covariates in regression-style models, following
practice outlined by E. Eriskin (2024) for transport-policy
evaluation. A dedicated functional block is assumed to be
responsible for computing route efficiency, including the
calculation of average travel time, a regularity coefficient
(the ratio of actual to scheduled arrivals), speed variance,
and route load levels across different times of day. These
indicators are intended to allow for a quantitative assess-
ment not only of the stability but also of the predictability
of public transport operations.

In subsequent iterations, the microservice is in-
tended to incorporate a forecasting module for delays or
congestion. This can be achieved by building time-series
models (e.g., Seasonal AutoRegressive Integrated Mov-
ing Average — SARIMA) or by applying machine-learning
methods (such as linear regression or eXtreme Gradi-
ent Boosting (XGBoost)) to predict metric values for the
subsequent hours or days. N. Schetakis et al. (2025) dis-
cussed short-term transport forecasting pipelines where
classical time-series baselines remain competitive under
constrained data, which motivates the decision to stage
SARIMA alongside tree-based learners. S.A. Inamdar &
S.S. Kulkarni (2025) explored quantum-inspired variants
for near-term improvements; in the case of this article,
such methods are regarded as future options once a stable
benchmark is established. The final stage of the analytics
microservice is envisaged to involve generating hypothe-
ses for the optimisation of the transport network. Drawing
on analyses of congestion, delays, and related metrics, the
microservice is expected to propose adjustments to the
route network — for example, relocating or adding stops,
modifying headways, or introducing additional servic-
es during peak hours. All hypotheses are intended to be
logged and prioritised by criticality, with forwarding to an
administrative console for expert review. Thus, the analyt-
ics microservice enables the transition from aggregated
data to concrete managerial conclusions that may be ap-
plied both to the tactical regulation of traffic and to the
strategic planning of urban mobility.
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The diagram (Fig. 3) was intended to depict the struc-
ture for processing aggregated transport data within the
analytics microservice. Input data in JSON or comma-sep-
arated values (CSV) format are assumed to be received
from the preceding Processing and Aggregation module.
In the first stage, key metrics are expected to be comput-
ed (average speed, delays, traffic intensity), after which

congestion and unstable routes are intended to be iden-
tified. Where required, the forecasting module is planned
to be activated, employing machine-learning or time-se-
ries algorithms. The final stage is intended to generate
hypotheses for improving the route network. The results
are to be passed, as structured JSON objects, to the subse-
quent components of the system.

Analytical microservice

Analytical microservice

Python
Asgregated Metrics Detection EOTeCas i Generating Analysis
input data calculation: of e tional)g hypotheses results
“JSON / - average speed congestion “Scilrzit—learn / for route “ISON /
Ccsv” - delay and unstable brophet” optimisation APT”
- intensity routes P

Figure 3. Analytical microservice architecture

Source: designed by the authors

For the implementation of the analytics microservice,
a technology stack is proposed that is oriented towards
efficient handling of tabular and time-series data, mathe-
matical modelling, and machine learning. Python is posi-
tioned to serve as the primary implementation language,
being widely adopted in urban and transport analytics and
allowing a rapid transition from prototypes to reproducible
pipelines. Y. Yu et al. (2025) illustrated how Python ecosys-
tems - pandas for feature engineering and scikit-learn for
modelling — can underpin multi-level mobility visualisation
with explainable components, which aligns with design of
this study for a modular analytics layer. The suite of special-
ised Python libraries is intended to enable both basic sta-
tistical processing and more advanced models for analysing
temporal trends and forecasting. In particular, the Inclu-
siViz line of work by the same authors demonstrated that
code-first stacks facilitate consistent metric definitions
across maps and charts, an approach authors of this study
planed to mirror to maintain indicator reproducibility.

In the domain of policy-facing forecasting and opti-
misation, E. Erigkin (2024) showed that Python pipelines
can blend behavioural covariates (e.g., weather, event
calendars) with machine-learning baselines for trans-
port strategy appraisal; the feature space is therefore
planned to remain extensible so that such covariates can
be incorporated without altering service boundaries. For
real-time or near-real-time processing, the analytics mi-
croservice is intended to interface with streaming sources
(e.g., Redis Streams), or to operate on periodically updat-
ed JSON/CSYV files or tables supplied by the preceding mi-
croservice. F. Yang (2025) emphasised the advantage of
stream abstractions that combine event buffering with
windowed aggregation; this insight motivates authors’
choice to expose time-window parameters at the config-
uration level so that cities can tune latency versus com-
pleteness. The selected stack is expected to enable the
processing of large volumes of transport data, the scal-
ing of computations as load increases, and the seamless

integration of the results with the system’s visualisation
and administration microservices.

To support spatial analysis, the stack is intended to in-
clude GeoPandas for topology-aware joins and Shapely for
geometric operations, enabling, for instance, corridor-lev-
el congestion detection and zone-based aggregation
without bespoke Geographic Information System (GIS)
servers. K. Ntouros et al. (2025) argued for lightweight,
Python-centric data engineering in municipal platforms,
noting that such stacks reduce operational overhead
while preserving extensibility; this perspective underlies
authors’ preference for a lean but composable toolchain.
Where higher-throughput ingestion becomes necessary,
the microservice boundary is planned to admit Kafka-style
brokers, yet the baseline remains deliberately minimal to
keep deployment attainable for smaller cities.

Model selection for short-term forecasting is intend-
ed to balance classical time-series methods (e.g., SARIMA)
and non-linear learners (e.g., gradient-boosted trees such
as XGBoost) so that the system can operate under both
scarce-data and richer-feature scenarios. N. Schetakis et
al. (2025) reported that well-tuned classical baselines re-
main competitive when observation windows are short or
sensors are uneven, which informs authors’ decision to
stage SARIMA alongside machine-learning alternatives
rather than replacing them outright. Exploratory tracks,
including quantum-inspired variants discussed by S.A. In-
amdar & S.S. Kulkarni (2025), were considered future op-
tions once deterministic benchmarks are established and
validated against municipal ground truth. Taken together,
the proposed Python-first stack is intended to provide a
pragmatic compromise: rapid prototyping for research it-
erations, explicit contracts for service integration, and a
clear path to scaling analytics as cities expand data cover-
age and latency expectations.

In summary, the analytics microservice is intended to
convert cleaned, aggregated streams into decision-ready
insights by combining descriptive indicators, anomaly
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detection, and short-term forecasting within one con-
figurable pipeline. Its design is expected to preserve re-
producibility through uniform time steps, stable metric
definitions, and explicit feature schemas, while accom-
modating both near-real-time updates and periodic batch
analyses. By emitting compact outputs — congestion flags,
timetable-stability scores, route-efficiency metrics, and
ranked optimisation hypotheses — the service is positioned
to support both operational interventions and longer-ho-
rizon planning. Clear JSON contracts and stateless execu-
tion paths are envisaged to ease integration with visual-
isation and administrative layers, enabling independent
scaling as data coverage grows. Collectively, these proper-
ties are intended to improve interpretability, shorten feed-
back loops for transport managers, and provide a robust
analytical core for the overall system.

Visualisation microservice for interactive urban
mobility dashboards. The visualisation microservice is
intended to serve as the terminal presentation layer for
all processed information in the system, transforming an-
alytical and aggregated data into clear, interactive visual
components. Its principal aim is to provide convenient, in-
tuitive access to complex transport information for a broad
range of users — from municipal analysts to ordinary citi-
zens and transport operators. D.M. Kozachenko et al. (2025)
argued that user-centred map interfaces improve decision
latency for operational staff, which underpins the choice
to emphasise rapid situational awareness over purely ex-
ploratory views. The scope of responsibility is proposed
to include building interactive maps with public transport
routes, congestion, and stops; displaying charts of head-
ways, average speed, delays, and passenger volumes; gen-
erating heat maps of transport load across different times
of day; presenting graphical analytics outputs in the form
of diagrams, histograms, and time series.

Thanks to this microservice, users are expected to be
able to review the current state of the transport situation,
analyse its dynamics, compare data across periods, detect
anomalies, and support well-founded decisions. Within the
visualisation microservice, inputs are assumed to arrive
from the analytics microservice and from the store of ag-
gregated data. These inputs adhere to a standardised for-
mat suitable for subsequent rendering in the web interface.
The data are intended to be provided as Geospatial JSON
(Geo]SON) objects for mapping routes, stops, and vehicles;
JSON tables or arrays for time charts, delays, and traffic
intensity; heat-map arrays for constructing density layers
based on coordinates and event counts; and timestamps for
building dynamic visualisations. Y. Yu et al. (2025) high-
lighted that mobility dashboards benefit from multi-level
drill-downs and explanations attached to visual primitives;
indicator definitions and tooltips are therefore planned
to be exposed that tie back to analytical computations.
Y. Cao et al. (2025) demonstrated that heat-map overlays
are effective for temporal crowding patterns, which moti-
vates the inclusion of configurable time windows and col-
our scales for peak-hour exploration.

To align with digital-twin practices, B.P. Rafamatanant-
soa et al. (2024) described City2Twin’s separation of stat-
ic 3D context from dynamic streams; the visual layer is
planned to respect this separation by treating basemap and
dynamic indicators as distinct sources, enabling smooth
playback and reduced redraw overhead. H.A. Adrianto et
al. (2024) showed that analyst-facing dashboards benefit
from scenario toggles and multi-chart coordination; ac-
cordingly, the microservice is intended to provide filter
panels (route, time, zone) that trigger coordinated updates
across maps and charts. A. Wibowo et al. (2024) reported
that disruption-aware overlays sourced from social streams
shorten route-adjustment time in critical events; the de-
sign retains a pluggable “incident overlay” so that cities
can add such feeds without altering the core renderer.

On the implementation side, the visualisation micro-
service is intended to be deployed as a separate front-end
application that interacts with other system modules via
a REST API. React is planned to be used as the primary
technology, providing a component architecture with in-
cremental Ul updates. For web mapping, Leaflet or Map-
box GL JS are envisaged to serve as the cartographic en-
gines; Leaflet offers lightweight vector overlays, while
Mapbox GL enables GPU-accelerated styles and animated
state transitions for moving objects. M. Laituri et al. (2025)
drew attention to the value of real-time public dashboards
during crisis response, and this is mirrored by reserving a
“live mode” that prioritises update cadence and progres-
sive rendering. For charts and heatmaps, Chart.js, D3.js, or
Recharts are intended to be employed, with D3 reserved for
bespoke interactions and Recharts for rapid composition in
React. Where 3D context becomes a requirement, the mi-
croservice boundary is planned to admit a lightweight 3D
scene (e.g., deck.gl) layered over the same data contracts to
preserve consistency with 2D views.

In summary, the visualisation microservice is intend-
ed to provide a coherent, low-latency interface that turns
complex spatio-temporal data into actionable views for di-
verse user groups. By standardising input contracts (Geo-
JSON, JSON tables, heat-map arrays) and separating map,
chart, and filter concerns, the layer is expected to remain
responsive under peak loads while preserving consistency
of indicators across widgets. A focus on accessibility, pro-
gressive rendering, and clear affordances is intended to
shorten time-to-insight for operational staff and to sup-
port reproducible analysis for experts. Through stateless
rendering, cache-friendly assets, and explicit API bound-
aries, the microservice is positioned to scale independent-
ly of upstream analytics. Collectively, these properties are
intended to ensure that the presentation tier strengthens
decision-making without constraining future extensions
such as 3D context or incident overlays.

Access and configuration management microser-
vice. The access and configuration management microser-
vice is intended to function as the administrative centre of
the web-based traffic flow analysis system. Its primary aim
is intended to be the provision of centralised control over
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key system parameters and the offering of basic user au-
thentication and authorisation capabilities. This is expect-
ed to enable the delineation of access levels to analytics,
the configuration of data refresh frequency, and the adap-
tation of the system to the needs of a specific city or trans-
port model. The functions of this microservice are pro-
posed to include: creating and managing API keys required
for integration with municipal or third-party data sources;
setting integration parameters: city, route network, update
timings, filters, and time intervals; defining user roles and
managing access rights; maintaining an audit log to ensure
transparency of administrative actions.

Implementing this microservice is intended to ensure
the scalability and flexibility of the entire system without
requiring modifications to the code of the core function-
al microservices. This is particularly important when de-
ploying the system across multiple cities or under varying
transport parameters and integration settings. The access
and configuration management microservice is envisaged
to perform a crucial systemic role - providing flexible ad-
ministration of all key parameters of the web system and
enforcing access restrictions for different user categories.
Its functionality is divided into several core blocks:

1) API key management. The system is expected to
provide an interface for creating, viewing, and deactivat-
ing API keys used to integrate municipal data sources. Each
key can be associated with a specific subsystem (e.g., inte-
gration with GPS trackers or municipal portals) and con-
strained by expiry and request-rate limits.

2) Integration parameter configuration. An adminis-
trator is expected to be able to set core configuration pa-
rameters: city, set of transport routes, source polling ca-
dence (e.g., every five minutes), time zone, and filters by
transport type or city districts. These settings are intended
to be stored centrally and propagated to other microservic-
es via a configuration API.

3) Users and access roles. A basic authentication mech-
anism (e.g., tokens or JSON Web Token (JWT)) and role-
based authorisation are provided. Typical roles are en-
visaged to be provided: administrator, analyst, and guest
viewer. Each role is expected to grant access to a defined
set of functions; for instance, only administrators are to be
allowed to alter configuration or create API keys.

4) Audit log. All configurations are intended to be re-
corded with timestamp, author, and action type. This is ex-
pected to enable activity monitoring and to ensure trans-
parency of system governance.

This microservice is not intended to process analytical
or cartographic data; however, it is considered critical to
the continuous operation of the entire system and to its
adaptation to new conditions without code changes. Its
presence is expected to render the system scalable, mul-
ti-scenario, and centrally manageable from a single point.
The Access and Configuration Management microservice
presupposes an administrative console through which au-
thorised users are intended to be able to configure the sys-
tem, create API keys, manage data refresh frequency, and

define role-based access policies. Accordingly, the primary
technological requirement is the rapid implementation of
CRUD functions (Create, Read, Update, and Delete) with
minimal front-end development effort.

Description of the overall architecture of the web-
based traffic flow management system. The adoption
of a microservice architecture is intended to enable the
creation of a flexible and scalable transport system in
which each component is expected to fulfil a narrowly
specialised function. Z. Wang et al. (2025) reported that
microservice decompositions support city-scale forecast-
ing around metro stations, which aligns with the inten-
tion to keep compute hotspots independently scalable.
C. Campos et al. (2025) argued that modelling data flows
at the architectural level — within oneAPI-style pipe-
lines — improves performance and manageability in mul-
ti-component systems; this view underpins the decision
to foreground flow contracts between services. Integrat-
ing the diagrams and models within a single subsection
is intended to ensure logical coherence and improves the
perception of the architecture as a unified information
space in which components are expected to operate in an
interrelated and sequential manner.

At the architectural level, the system is envisaged to
comprise the following principal containers:

Frontend (client tier) — intended to provide users
with access to transport-data visualisation, interactive
charts, heatmaps, and configuration interfaces.

API Gateway/Router - intended to coordinate user re-
quests and to route them to the appropriate microservices.

Microservices — Municipal API Integration, Data
Processing and Aggregation, Analytics, Visualisation, and
Access & Configuration Management — intended to encap-
sulate domain-specific responsibilities.

Database - intended to serve as a central repository
for aggregated and historical data.

Configuration/Logging Store - intended to hold pa-
rameters, API keys, and audit logs.

Each microservice is intended to be deployed inde-
pendently, allowing only those components under load
to be scaled. The architectural style is intended to accord
with contemporary approaches to mobility management
systems — particularly in smart cities — where isolated log-
ic, distributed data, and a high degree of modularity are
preferred. Z. Wang et al. (2025) emphasised such modular
scaling in urban mobility platforms, while C. Campos et
al. (2025) highlighted coordination of heterogeneous com-
pute stages via explicit flow specifications. Figure 4 pre-
sented the C4 container-level diagram of the system. The
diagram is intended to present the overall architecture of
the web-based traffic flow management system built on a
microservice model. The system is described as consisting
of several independent containers (microservices), each in-
tended to perform a clearly defined function. The user (an-
alyst, dispatcher, or operator) is expected to interact with
the system via a React-based web interface. The web inter-
face is intended to send requests to an API Gateway, which
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is intended to act as a router between the client and the in-
ternal microservices. All processed information is intended
to be stored in a central database (PostgreSQL), while con-
figuration parameters — including change logs and tokens —
are intended to be maintained in a separate configuration
store (Redis or JSON-based storage). Beyond the structural

architecture and user scenarios, an important aspect of
conceptual modelling is intended to be the description of
how data are transmitted and transformed within the sys-
tem. For this purpose, a DFD is planned to be employed
to depict, in a clear and intuitive manner, the sources,
processors, stores, and directions of information flow.

User
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working with transportation

Web-based transport monitoring system (system)

Used

Web-interface
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Display of maps, graphs and analysis results

HTTP
A 4
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REST REST L
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Figure 4. C4 container-level diagram

Source: designed by the authors

Such diagrams were particularly valuable in transport
information systems where large volumes of real-time
streams require structured processing; this observation
supports the choice to make data-flow boundaries ex-
plicit. B.P. Rafamatanantsoa et al. (2024) showed, in the
City2Twin context, that microservice-oriented architec-
tures facilitate the tracing and scaling of data flows across
dynamic streams and static context; the DFD is intended
to mirror this separation of concerns. The components
captured by a DFD are intended to include: external data
sources/receivers (users, APIs); processing processes (mi-
croservices); intermediate and final data stores (data-
base, cache); data flows between components. The DFD
for the traffic flow management system is intended to be
shown in Figure 5. The data-flow diagram is intended to
depict the key information transformations within the
system. Data are expected to arrive from external sources

(municipal APIs), to be processed by the integration and
aggregation microservices, to be stored in the database,
to be subjected to analytical processing, and ultimately
to be presented to the user. All processes are intended
to be configured via a dedicated configuration microser-
vice, which is expected to ensure flexibility, centralised
parameter control, and efficient data movement. For the
storage, processing, and subsequent analysis of trans-
port data, the web system is intended to employ a cen-
tralised relational database. Its structure is intended to
be modelled using an ER diagram, which is intended to
visualise the core entities, their attributes, and the rela-
tionships between them. S. Batita et al. (2024) reported
that relational, domain-oriented schemas remain effec-
tive in urban transport systems for scalability and ana-
lytical integration, while A. Mansurova et al. (2025) de-
scribed schema designs that handle high-volume GPS
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events under city workloads; these findings motivate the
choice of a relational backbone with explicit keys and

City APIs

JSON with coordinates, routes Update

frequency

Microservice integrations

Cleaned and
normalised data

Settings microservice

Prediction results,
markets

Processing microservice

Database

constraints. The list of database entities is intended to be
presented in Table 2.

Filters and
configurations

Role parameters

Generated files, log files

Historical series,
parameters

Analytical microservice

review

Visualisation microservice

Figure 5. Service DFD diagram

Source: designed by the authors

Table 2. Principal database entities

Entity Description
Routes Route number, mode of transport, origin and terminus stops.
Vehicles Identifier, type, associated route number, GPS coordinates.
Stops Stop name, coordinates, list of routes serving the stop.
Traffic events Timestamp, location, delay, vehicle ID, distance to the nearest stop.
Analytics/Forecast Model type, route ID, date, forecast output.
Users Name, role (analyst, administrator), access token.

Source: compiled by the authors

Figure 6 presented a visual representation of the data-
base in the form of an ER diagram. It is intended to outline
the core entity sets (such as Routes, Vehicles, Stops, Move-
mentEvents, Indicators, Users/Roles, and Configurations)
together with their primary-foreign key relationships and
cardinalities. The diagram is expected to guide normal-
isation choices (for example, separating time-stamped
movement events from relatively static vehicle or route
metadata) and to make integrity constraints explicit for
implementation. By fixing these invariants at the schema
level, the model is positioned to support scalable ingestion,
consistent historical queries, and reproducible analytics
across different city deployments. The ER diagram is in-
tended to depict the structure of the database that is ex-
pected to store information on transport routes, vehicles,
stops, traffic events, and analytical results. Each route is
intended to be linked to a set of vehicles and stops; each
vehicle is intended to be associated with movement events;
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and each analytical record is intended to be generated by a
system user. This model is intended to encode relationships
between real-world objects and to support rapid access to
the required information. In summary, the overall architec-
ture is intended to provide a clear separation of concerns,
where each microservice fulfils a narrowly scoped role and
communicates through explicit, well-typed contracts. This
decomposition is expected to simplify scaling and fault iso-
lation, while the API Gateway, shared schemas, and config-
uration store maintain coherence across the system. The
C4,DFD, and ER artefacts together are meant to anchor im-
plementation and testing by fixing boundaries, data flows,
and invariants before code. Operationally, the design aims
to balance near-real-time updates with batch consolida-
tion, so that cities can tune latency, load, and cost to local
needs. Collectively, these properties are intended to deliver
a robust foundation for deployment, evolution, and repro-
ducible analysis in heterogeneous urban environments.
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Source: designed by the authors

Conclusions

The study has enabled the formulation of a coherent con-
ceptual model of a web-based system for managing urban
traffic flows grounded in a microservice architecture. It
was found that delineating the system’s functional zones
at the microservice level ensures a clear separation of re-
sponsibilities and facilitates scaling without disrupting the
overall data-processing logic. The analysis showed that the
chosen sequence of modelling artefacts — an ER diagram for
the domain, a multi-level DFD to trace information flows,
and a C4 diagram to refine container boundaries and inter-
actions — is sufficient for the unambiguous reproduction of
the proposed architecture by other researchers and devel-
opers. It was demonstrated that integrating these artefacts
within a single methodological framework minimises am-
biguities in data interpretation and conflicts between com-
ponents, which is particularly important in urban scenarios
characterised by heterogeneous data sources.

It was found that the asynchronous interaction of the
integration module with municipal application program-
ming interfaces ensures stable message intake and simpli-
fies the unification of data formats. The analysis showed
that deploying a dedicated processing and aggregation
module makes it possible to standardise core traffic met-
rics and prepare aligned temporal slices for subsequent
interpretation. It was substantiated that the analytics
module should be constructed as a superstructure over
aggregated indicator sets, focusing on the computation

The proposed separation of processing into oper-
ational and periodic modes proved methodologically
sound. It was established that the operational loop is
appropriate for obtaining current indicators of load and
deviations from the timetable, whereas the periodic loop
serves to reconcile historical data and to construct aggre-
gate measures. It was demonstrated that unified metric
definitions and deterministic calculation functions are
critical to the reproducibility of results across diverse ur-
ban contexts and ensure consistency between visual rep-
resentations and the outputs of the analytics module. Fu-
ture research will focus on the stepwise validation of the
model using real urban data, the deployment of a proto-
type connected to open application programming inter-
faces, the extension of the analytics module with methods
for forecasting short-term delays and overloads, and the
development of harmonised visualisation scenarios for
different user categories, thereby enabling an assessment
of the proposed architecture’s scalability and reproduci-
bility under practical conditions.
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AHOTOAUA. AKTYyaJbHICTh [JOCTIIKEHHsS 3yMOBJIEHA 3POCTAHHSIM HABAHT&KEHHS Ha MICbKy TPaHCIOPTHY
iHdpacTpyKTypy, morpeboto y undposiii TpaHcopmaliii ynpasiriHHS MOOIIbHICTIO Ta BIIPOBAI)KEHHI iHTEJIEKTYaTbHUX
TEeXHOJIOTi}i aHali3y JaHUX y PeXXUMi peasibHOTrO yacy. Taka cucremMa Ja€ 3MOTYy OIlepaTUBHO pearyBaTy Ha 3MiHU y pyci
TPAHCIIOPTY, MiABUILYBaTH e(eKTUBHICTh MapIIpyTHOI MepeXi Ta MOKpAIlyBaTH SIKiCTb MiCbKUX TepeBe3eHb. MeToI0
IOCTimKeHHST 6y/10 hOpMYyBaHHS apXiTeKTypu Be6-cucTeMy, sika 3abesreuye iHTerpaiito JaHux i3 Micbkux iHTepdeiiciB
MIPUKIAAHOTO MpOorpaMyBaHHs, iX aBTOMAaTM30BaHy OOpPOOKY, aHAMITMUYHY iHTeprpeTalilo, Bidyatisalilo pe3yibTaTiB
Ta IeHTpai3oBaHe KepyBaHHSI KOHbirypauisMu. MeTOLOMOTIYHY OCHOBY CTAaHOBWIM IIiIXOAM CUCTEMHOIO aHasi3y,
MOZEMIOBAaHHS TOTOKIB JaHUX, MOOyHoBa AiarpaM «CYTHICTb-3B’SI30K» Ta 3aCTOCYBaHHSI apXiTeKTypHMX IIAGIOHIB
IJIS1 BiOOpaskeHHsI CTPYKTYPHOI Ta (PyHKI[iOHAJIbHOI B3a€MOJii KOMITIOHEHTIB. Y CTaTTi pO3pO6IEHO KOHIENTYaIbHY
Mozenb Beb-cucTeMy YIPaBIiHHS TPAHCIOPTHMMM TIOTOKaMM Yy MiChKOMY CepefoBMILi, ITOOYyLOBaHY 3a MPUHIMIIAMU
MiKpocepBicHOI apxiTekTypu. Pe3ynbraToM po60TH 6YI0 CTBOPEHHS CTPYKTYPHOI MO CUCTeMM, 1110 BKIIOUMIIA IT'SITh
B3a€MOTIOB’SI3aHMX MiKpocepBiciB: iHTerpaiii 3 micbkumu iHTepdeiicamyu mpukiagHoro nporpamyBanHs (Node.js),
06pobku Ta arperauii maHux (Python, Redis Streams), aHaiTUYHOTO MOAY/IS 3 MiATPUMKOIO aATOPUTMIB MAIIMHHOTO
HaBuaHHs (Scikit-learn), monyns Bisyamizanii (React, Mapbox, Chart.js) Ta cepBicy KepyBaHHS OCTYIIOM i KOHGIrypaiismu.
IleTaJIbHO OIMCAHO JIOTiKYy iXHbOI B3aeMomii, MexaHi3Mu MaciuTabyBaHHS Ta 3abe3NedyeHHs BiZMOBOCTIIKOCTI.
ITpakTUYHAa IiHHICTh TOCTiIKeHHS TOMSITana y po3pobieHHi YHiBepcaabHO1 apXiTeKTOHIYHOI OCHOBM JIJIST BIIPOBAKeHHSI
CUCTeM aHATITUKM 1 MOHITOPMHTY MiCbKOTO TPAHCIIOPTY, [0 MOXKYThb CTATU IIPOTOTUIIOM iHTeNIeKTyaJIbHUX IIaTdopM
yIpaBJiHHS MOOGibHICTIO B KOHIerii Smart City

KrtouoBi crioBa: posnonineHi indopMaliiiti cepicu; 1 poBe MOAeI0BaHHS MiCbKOI MOGIILHOCTI; aHaIi3 IIOTOKIB
JIaHUX Y peaJbHOMY 4aci; Be6-aHa/liTYKa TPAHCIIOPTHUX CUCTEM; BisdyaJti3allisi MpOCTOPOBO-4acoBuUX gaHux; Smart City
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