EFFECT OF SUBSTITUTED NICOTINAMIDE AND ITS POSSIBLE METABOLITES ON THE ACTIVITY OF ETHANOL OXIDIZING ENZYMES

Authors

  • О. В. Кислова Kyiv National University of Technologies and Design

DOI:

https://doi.org/10.30857/1813-6796.2020.2.10

Keywords:

alcohol dehydrogenase, aldehyde dehydrogenase, inhibitor, sensitizing drugs

Abstract

To study the influence of N-phenyl-N-(1-cyclopropylethyl)nicotinamide and its possible metabolites: hydrochlorides of N-(1-cyclopropylethyl)amine and N-phenyl-N-(1-cyclopropylethyl)amine - on the activity of  main ethanol oxidation enzymes in vitro and kinetic nature of their interaction. The studies were carried out using alcohol dehydrogenase and aldehyde dehydrogenase of rat liver subcellular fractions, which were obtained by differential centrifugation. The enzyme activity was determined spectrophotometrically. The kinetic nature of alcohol dehydrogenase and isozyme form of aldehyde dehydrogenase  interaction with substituted nicotinamide was investigated in the concentration range of 25-100 μM. The research results were processed by the Lineweaver-Burk method. Studies have shown that N-phenyl-N-(1-cyclopropylethyl)nicotinamide is able to reduce the rate of the reverse alcohol dehydrogenase reaction of acetaldehyde reduction to ethanol in the presence of NADH by 46% with an inhibition constant 53 μM. The activity of soluble mitochondrial aldehyde dehydrogenase was suppressed by 50% with an inhibition constant 108 μM. The kinetic nature of the substituted nicotinamide interaction with enzymes at saturating concentrations of the reaction cofactors NADH and NAD+ is quite complex. Allosteric effects can play a significant role in enzymatic activity. Possible metabolites of the compound - hydrochlorides of N-(1-cyclopropylethyl)- and N-phenyl-N-(1-cyclopropylethyl)amine – didn`t significantly influence on ethanol metabolism enzymes activity. A new inhibitor of the rate of the reverse alcohol dehydrogenase reaction and the activity of soluble mitochondrial isozyme form of aldehyde dehydrogenase, which lead to the accumulation of acetaldehyde in the body, has been discovered. N-phenyl-N-(1-cyclopropylethyl)nicotinamide can be used as a potential antialcohol sensitizing drug after research in vivo.

Downloads

Download data is not yet available.

Published

2020-10-14

Issue

Section

Chemical, Biological & Pharmaceutical Technologies