УЗГОДЖЕННЯ ПОКАЗНИКІВ ПРОДУКТИВНОСТІ РОБОТИ СКРАМ КОМАНДИ З ДОВГОСТРОКОВИМИ ЦІЛЯМИ ВИКОРИСТОВУЮЧИ МАТЕМАТИЧНІ МОДЕЛІ ТА ШІ
DOI:
https://doi.org/10.30857/2786-5398.2025.1.10Ключові слова:
Скрам, продуктивність команди, штучний інтелект, OKR, прогнозування, Custom GPT, множинна регресія, KPI, гнучке управлінняАнотація
У статті розглядається проблема узгодження показників продуктивності роботи Скрам команд із довгостроковими цілями організації шляхом використання інструментів штучного інтелекту (ШІ) та математичного моделювання. Автор звертає увагу на складність гармонізації емпіричних метрик, які використовуються в гнучких підходах управління проєктами, з формалізованими стратегічними показниками, зокрема в рамках методології OKR. У якості вирішення пропонується створення кастомізованої GPT-моделі, що здатна здійснювати аналіз великих обсягів проєктних даних, прогнозувати ключові показники продуктивності та пропонувати оптимізаційні дії. Дослідження ґрунтується на застосуванні методу множинної регресії для визначення впливу таких факторів, як розмір команди, кількість дефектів, покриття тестами, технічний борг і досвід команди, на продуктивність та інші важливі Скрам метрики. Представлені математичні моделі дозволяють не лише аналізувати минулі результати, а й моделювати майбутні сценарії залежно від цілей компанії. Окрему увагу приділено апробації методології на реальних Scrum-командах, що дозволило оцінити її практичну ефективність і виявити найбільш впливові метрики. Крім того, продемонстровано, що використання Custom GPT дозволяє значно скоротити витрати на ручну аналітику, підвищити точність планування та автоматизувати процес прийняття рішень. Пропонується також метод пріоритезації метрик відповідно до цілей команди та компанії, що базується на інтеграції AI-аналітики з системами стратегічного управління. Стаття акцентує увагу на тому, що хоча ШІ є потужним інструментом для підтримки прийняття рішень, участь людини залишається критично важливою для врахування контексту, специфіки проєктів і можливих похибок. У підсумку запропонована методика сприяє покращенню прогнозованості результатів, підвищенню командної продуктивності та більш точному узгодженню дій команди з довгостроковими бізнес-цілями. Отримані результати можуть бути застосовані в практиці керування ІТ-проєктами та є основою для подальших досліджень у сфері інтеграції ШІ з гнучкими методологіями.
Завантаження
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.